CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2 |
Haipeng Zhao(赵海鹏)1, Yin Liu(刘隐)1, Shengguo Yang(杨胜国)2,3, Chenfang Lin(林陈昉)1, Mingxing Chen(陈明星)2,3, Kai Braun4, Xinyi Luo(罗心仪)1, Siyu Li(李思宇)1, Anlian Pan(潘安练)1,†, and Xiao Wang(王笑)1,‡ |
1 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Centre for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China; 3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 4 Institute of Physical and Theoretical Chemistry and LISA+, University of Tubingen, Auf der Morgenstelle 18, ¨ 72076 Tubingen, Germany |
|
|
Abstract Transition metal ditellurides (TMTDs) have versatile physical properties, including non-trivial topology, Weyl semimetal states and unique spin texture. Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications. Here, we demonstrate the epitaxial growth of 1T'-MoTe2 on Au (111) and graphitized silicon carbide (Gr/SiC) by molecular beam epitaxy (MBE). We investigate the morphology of the grown 1T'-MoTe2 at the atomic level by scanning tunnelling microscopy (STM) and reveal the corresponding microscopic growth mechanism. It is found that the unique ordered Te structures preferentially deposited on Au (111) regulate the growth of monolayer single crystal 1T'-MoTe2, while the Mo clusters were preferentially deposited on the Gr/SiC substrate, which impedes the ordered growth of monolayer MoTe2. We confirm that the size of single crystal 1T'-MoTe2 grown on Au (111) is nearly two orders of magnitude larger than that on Gr/SiC. By scanning tunnelling spectroscopy (STS), we observe that the STS spectrum of the monolayer 1T'-MoTe2 nano-island at the edge is different from that at the interior, which exhibits enhanced conductivity.
|
Received: 04 November 2023
Revised: 11 December 2023
Accepted manuscript online: 19 December 2023
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
37.20.+j
|
(Atomic and molecular beam sources and techniques)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204302), the National Natural Science Foundation of China (Grant Nos. 52022029, 52221001, 92263107, U23A20570, 62090035, U19A2090, and 12174098), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2022JJ30142 and 2019XK2001), and in part supported by the State Key Laboratory of Powder Metallurgy, Central South University. Calculations were carried out using computing resources at the High Performance Computing Platform of Hunan Normal University. |
Corresponding Authors:
Anlian Pan, Xiao Wang
E-mail: anlian.pan@hnu.edu.cn;xiao_wang@hnu.edu.cn
|
Cite this article:
Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑) Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2 2024 Chin. Phys. B 33 046801
|
[1] Wang W, Kim S, Liu M, Cevallos F, Cava R and Ong N 2020 Science 368 534 [2] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B 2015 Nature 527 495 [3] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805 [4] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B and Medvedev S A 2016 Nat. Commun. 7 11038 [5] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys 13 683 [6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [7] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J and Lee Y H 2015 Nat. Phys. 11 482 [8] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003 [9] Zhu Y, Li Z, Zhang L, Wang B, Luo Z, Long J, Yang J, Fu L and Lu Y 2018 ACS Appl. Mater. Interfaces 10 43291 [10] Chen W, Liang R, Wang J, Zhang S and Xu J 2018 Sci. Bull. 63 997 [11] Whangbo M H and Canadell E 1992 J. Am. Chem. Soc. 114 9587 [12] Heising J and Kanatzidis M 1999 J. Am. Chem. Soc. 121 638 [13] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z and Liu 2019 Nat. Commun. 10 2044 [14] Vila M, Hsu C H, Garcia J H, Benítez L A, Waintal X, Valenzuela S O, Pereira V M and Roche S 2021 Phys. Rev. Res. 3 043230 [15] Guo Z, Wang L, Han M, Zhao E, Zhu L, Guo W, Tan J, Liu B, Chen X Q and Lin J 2022 ACS Nano 16 11268 [16] Pace S, Martini L, Convertino D, Keum D H, Forti S, Pezzini S, Fabbri F, Miseikis V and Coletti C 2021 ACS Nano 15 4213 [17] Yang L, Zhang W, Li J, Cheng S, Xie Z and Chang H 2017 ACS Nano 11 1964 [18] Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F, Xu K, Fang W, Ueno K, Li J, Palacios T, Kong J and Dresselhaus M S 2016 Adv. Mater. 28 9526 [19] Chen J, Wang G, Tang Y, Tian H, Xu J, Dai X, Xu H, Jia J, Ho W and Xie M 2017 ACS Nano 11 3282 [20] Yu Y, Wang G, Tan Y, Wu N, Zhang X A and Qin S 2018 Nano Lett. 18 675 [21] Li Y, Wu D, Wang D, Zhang Y, Min T and Pan Y 2022 Adv. Mater. Interfaces 10 2202043 [22] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.:Condens. Matter 25 095002 [23] Duerloo K A, Li Y and Reed E J 2014 Nat. Commun. 5 4214 [24] Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W and Loh K P 2019 ACS Nano 13 2316 [25] Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X and Zhang Y 2022 Nat. Commun. 13 3238 [26] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 1606264 [27] Dawson W and Bullett D 1987 J. Phys. Chem. C 20 6159 [28] Guan J, Huang X, Xu X, Zhang S, Jia X, Zhu X, Wang W and Guo 2018 Surf. Sci. 669 198 [29] Pham T T, Castelino R, Felten A and Sporken R 2020 Appl. Surf. Sci. 523 146428 [30] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J and Suenaga K 2015 Science 349 625 [31] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 [32] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [33] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|