CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Topological superconductors with spin-triplet pairings and Majorana Fermi arcs |
Shi Huang(黄石) and Xi Luo(罗熙)† |
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract We construct a three-dimensional topological superconductor Bogoliubov-de Gennes (BdG) Hamiltonian with the normal state being a three-dimensional topological insulator. By introducing inter-orbital spin-triplet pairings term $\varDelta_3$, there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface, similar to the case of Weyl semimetal. Furthermore, by adding an inversion-breaking term to the normal state, momentum-independent pairing terms with different parities can coexist in the BdG Hamiltonian, which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
|
Received: 11 January 2024
Revised: 19 April 2024
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174067 and 11804223). |
Corresponding Authors:
Xi Luo
E-mail: xiluo@usst.edu.cn
|
Cite this article:
Shi Huang(黄石) and Xi Luo(罗熙) Topological superconductors with spin-triplet pairings and Majorana Fermi arcs 2024 Chin. Phys. B 33 087301
|
[1] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [2] Xu G, Weng H M, Wang Z J, et al. 2011 Phys. Rev. Lett. 107 186806 [3] Weng H M, Fang C, Fang Z, et al. 2015 Phys. Rev. X 5 011029 [4] Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373 [5] Lv B Q, Weng H M, Fu B B, et al. 2015 Phys. Rev. X 5 031013 [6] Lv B Q, Xu N, Weng H M, et al. 2015 Nat. Phys. 11 724 [7] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [8] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697 [9] Wang Z, Sun Y, Chen X Q, et al. 2012 Phys. Rev. B 85 195320 [10] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126 [11] Weng H M, Liang Y, Xu Q, et al. 2015 Phys. Rev. B 92 045108 [12] Bradlyn B, Cano J, Wang Z J, et al. 2016 Science 353 558 [13] Weng H M, Fang C, Fang Z, et al. 2016 Phys. Rev. B 93 241202 [14] Li F Y, Li Y D, Kim Y B, et al. 2016 Nat. Commun. 7 12691 [15] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101 [16] Zhang L F, Ren J, Wang J S and Li B W 2010 Phys. Rev. Lett. 105 225901 [17] He H, Qiu C, Ye L, et al. 2018 Nature 560 61 [18] Khanikaev A B, Hossein M S, Tse W K, et al. 2013 Nat. Mater. 12 233 [19] Chen W J, Jiang S J, Chen X D, et al. 2014 Nat. Commun. 5 5782 [20] Ding K, Ma G C, Xiao M, et al. 2016 Phys. Rev. X 6 021007 [21] Kitaev A 2003 Ann. Phys. (NY) 303 2 [22] Kitaev A 2001 Phys. Usp. 44 131 [23] Lian B, Sun X Q, Vaezi A, et al. 2018 Proc. Natl. Acad. Sci. USA 115 10938 [24] Zhan Y M, Chen Y G, Chen B, et al. 2022 New J. Phys. 24 043009 [25] Majorana E 1937 Il Nuovo Cimento 14 171 [26] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [27] Wray L A, Xu S Y, Xia Y, et al. 2010 Nat. Phys. 6 855 [28] Sato M 2006 Phys. Rev. B 73 214502 [29] Yang S Y A, Pan H and Zhang F 2014 Phys. Rev. Lett. 113 046401 [30] Sato M and Fujimoto S 2010 Phys. Rev. Lett. 105 217001 [31] Zhang P, Yaji K, Hashimoto T, et al. 2018 Science 360 182 [32] Zhang P, Wang Z J, Wu X X, et al. 2019 Nat. Phys. 15 41 [33] Wang D F, Kong L Y, Fan P, et al. 2018 Science 362 333 [34] Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296 [35] Bernevig B A, Hughes T L and Zhang S C 2019 Science 314 1757 [36] Zhang H J, Liu C X, Qi X L, et al. 2009 Nat. Phys. 5 438 [37] Zhang R X, Cole W S and Das Sarma S 2019 Phys. Rev. Lett. 122 187001 [38] Wang Z J, Zhang P, Xu G, et al. 2015 Phys. Rev. B 92 115119 [39] Nakosai S, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 147003 [40] Zhang R X and Das Sarma S 2021 Phys. Rev. Lett. 126 137001 [41] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 [42] Xu Y M, Huang Y B, Cui X Y, et al. 2011 Nat. Phys. 7 198 [43] Ueno Y, Yamakage A, Tanaka Y, et al. 2013 Phys. Rev. Lett. 111 087002 [44] Shiozaki K and Sato M 2014 Phys. Rev. B 90 165114 [45] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504 [46] Sedlmayr N, Kaladzhyan V, Dutreix C, et al. 2017 Phys. Rev. B 96 184516 [47] Setiawan F, William S Cole, Jay D S, et al. 2017 Phys. Rev. B 95 020501 [48] Schnyder A P, Brydon P M R, Manske D, et al. 2010 Phys. Rev. B 82 184508 [49] Goll G 2006 Physica B 383 71 [50] Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|