CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Majorana noise model and its influence on the power spectrum |
Shumeng Chen(陈书梦)1, Sifan Ding(丁思凡)1, Zhen-Tao Zhang(张振涛)2, and Dong E. Liu(刘东)1,3,4,5,† |
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China; 5 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an in-depth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact. Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits.
|
Received: 21 July 2023
Revised: 09 September 2023
Accepted manuscript online: 26 September 2023
|
PACS:
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
74.20.Mn
|
(Nonconventional mechanisms)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: We would like to express our gratitude for the valuable discussions with Li Chen, Feng-Feng Song, Gu Zhang and Zhenhua Zhu. This work was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302400), the National Natural Science Foundation of China (Grants No. 11974198), and the Natural Science Foundation of Shandong Province of China (Grant No. ZR2021MA091). |
Corresponding Authors:
Dong E. Liu
E-mail: dongeliu@mail.tsinghua.edu.cn
|
Cite this article:
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东) Majorana noise model and its influence on the power spectrum 2024 Chin. Phys. B 33 017101
|
[1] Kitaev A 2003 Annals of Physics 303 2 [2] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [3] Fradkin E, Nayak C, Tsvelik A and Wilczek F 1998 Nuclear Physics B 516 704 [4] Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802 [5] Bonderson P, Kitaev A and Shtengel K 2006 Phys. Rev. Lett. 96 016803 [6] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [7] Bishara W, Bonderson P, Nayak C, Shtengel K and Slingerland J K 2009 Phys. Rev. B 80 155303 [8] Das Sarma S, Nayak C and Tewari S 2006 Phys. Rev. B 73 220502 [9] Kitaev A Y 2001 Physics-Uspekhi 44 131 [10] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52 [11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002 [12] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003 [13] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys 8 795 [14] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414 [15] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887 [16] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406 [17] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401 [18] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P and Marcus C M 2016 Nature 531 206 [19] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P and Marcus C M 2016 Science 354 1557 [20] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001 [21] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 [22] Read N and Green D 2000 Phys. Rev. B 61 10267 [23] Alicea J 2012 Rep. Prog. Phys. 75 076501 [24] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 [25] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensburg K and Alicea J 2016 Phys. Rev. X 6 031016 [26] Munk M I K, Schulenborg J, Egger R and Flensberg K 2020 Phys. Rev. Research 2 033254 [27] Hassler F, Akhmerov A R, Hou C Y and Beenakker C W J 2010 New J. Phys. 12 125002 [28] Plugge S, Rasmussen A, Egger R and Flensberg K 2017 New J. Phys. 19 012001 [29] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305 [30] Fu L 2010 Phys. Rev. Lett. 104 056402 [31] van Heck B, Lutchyn R M and Glazman L I 2016 Phys. Rev. B 93 235431 [32] Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygard J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14 400 [33] Shabani J, Kjaergaard M, Suominen H J, Kim Y, Nichele F, Pakrouski K, Stankevic T, Lutchyn R M, Krogstrup P, Feidenhans'l R, Kraemer S, Nayak C, Troyer M, Marcus C M and Palmstr C J 2016 Phys. Rev. B 93 155402 [34] Gul O, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T and Kouwenhoven L P 2018 Nat. Nanotech. 13 192 [35] Beenakker C 2013 Annu. Rev. Condens. Matter Phys. 4 113 [36] Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522 [37] Sarma S D, Freedman M and Nayak C 2015 npj Quantum Inf. 1 15001 [38] Jiang L, Kane C L and Preskill J 2011 Phys. Rev. Lett. 106 130504 [39] Bonderson P and Lutchyn R M 2011 Phys. Rev. Lett. 106 130505 [40] Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R and Beenakker C W J 2013 Phys. Rev. B 88 035121 [41] Clarke D J, Sau J D and Das Sarma S 2016 Phys. Rev. X 6 021005 [42] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412 [43] Steiner J F and von Oppen F 2020 Phys. Rev. Research 2 033255 [44] Cao Z, Chen S, Zhang G and Liu D E 2023 Science China Physics, Mechanics & Astronomy 66 267003 [45] Wiseman H M, Utami D W, Sun H B, Milburn G J, Kane B E, Dzurak A and Clark R G 2001 Phys. Rev. B 63 235308 [46] Budich J C, Walter S and Trauzettel B 2012 Phys. Rev. B 85 121405 [47] Karzig T, Cole W S and Pikulin D I 2021 Phys. Rev. Lett. 126 057702 [48] Flensberg K 2011 Phys. Rev. Lett. 106 090503 [49] Cheng M, Lutchyn R M, Galitski V and Das Sarma S 2009 Phys. Rev. Lett. 103 107001 [50] Goldstein G and Chamon C 2011 Phys. Rev. B 84 205109 [51] Rainis D and Loss D 2012 Phys. Rev. B 85 174533 [52] Wang C, Gao Y Y, Pop I M, Vool U, Axline C, Brecht T, Heeres R W, Frunzio L, Devoret M H, Catelani G, Glazman L I and Schoelkopf R J 2014 Nat. Commun. 5 5836 [53] Knapp C, Beverland M, Pikulin D I and Karzig T 2018 Quantum 2 88 [54] Knapp C, Karzig T, Lutchyn R M and Nayak C 2018 Phys. Rev. B 97 125404 [55] Ralph T C Howard Wiseman and Gerard Milburn:Quantum measurement and control[J]. Springer US, 2012(1) [56] Marlan O Scully and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press) [57] Khindanov A, Pikulin D and Karzig T 2021 SciPost Phys. 10 127 [58] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101 [59] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 1652 [60] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548 [61] Goan H S, Milburn G J, Wiseman H M and Bi Sun H 2001 Phys. Rev. B 63 125326 [62] Chang A M, Baranger H U, Pfeiffer L N, West K W and Chang T Y 1996 Phys. Rev. Lett. 76 1695 [63] Goan H S and Milburn G J 2001 Phys. Rev. B 64 235307 [64] Gurvitz S A 1997 Phys. Rev. B 56 15215 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|