Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017101    DOI: 10.1088/1674-1056/acfd19
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Majorana noise model and its influence on the power spectrum

Shumeng Chen(陈书梦)1, Sifan Ding(丁思凡)1, Zhen-Tao Zhang(张振涛)2, and Dong E. Liu(刘东)1,3,4,5,†
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Frontier Science Center for Quantum Information, Beijing 100084, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an in-depth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact. Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits.
Keywords:  Majorana zero mode      topological quantum computation      topological devices      decoherence and noise in qubits  
Received:  21 July 2023      Revised:  09 September 2023      Accepted manuscript online:  26 September 2023
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.20.Mn (Nonconventional mechanisms)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: We would like to express our gratitude for the valuable discussions with Li Chen, Feng-Feng Song, Gu Zhang and Zhenhua Zhu. This work was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302400), the National Natural Science Foundation of China (Grants No. 11974198), and the Natural Science Foundation of Shandong Province of China (Grant No. ZR2021MA091).
Corresponding Authors:  Dong E. Liu     E-mail:  dongeliu@mail.tsinghua.edu.cn

Cite this article: 

Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东) Majorana noise model and its influence on the power spectrum 2024 Chin. Phys. B 33 017101

[1] Kitaev A 2003 Annals of Physics 303 2
[2] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[3] Fradkin E, Nayak C, Tsvelik A and Wilczek F 1998 Nuclear Physics B 516 704
[4] Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802
[5] Bonderson P, Kitaev A and Shtengel K 2006 Phys. Rev. Lett. 96 016803
[6] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[7] Bishara W, Bonderson P, Nayak C, Shtengel K and Slingerland J K 2009 Phys. Rev. B 80 155303
[8] Das Sarma S, Nayak C and Tewari S 2006 Phys. Rev. B 73 220502
[9] Kitaev A Y 2001 Physics-Uspekhi 44 131
[10] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[12] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[13] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys 8 795
[14] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[15] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[16] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406
[17] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[18] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P and Marcus C M 2016 Nature 531 206
[19] Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P and Marcus C M 2016 Science 354 1557
[20] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[21] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[22] Read N and Green D 2000 Phys. Rev. B 61 10267
[23] Alicea J 2012 Rep. Prog. Phys. 75 076501
[24] Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003
[25] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensburg K and Alicea J 2016 Phys. Rev. X 6 031016
[26] Munk M I K, Schulenborg J, Egger R and Flensberg K 2020 Phys. Rev. Research 2 033254
[27] Hassler F, Akhmerov A R, Hou C Y and Beenakker C W J 2010 New J. Phys. 12 125002
[28] Plugge S, Rasmussen A, Egger R and Flensberg K 2017 New J. Phys. 19 012001
[29] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305
[30] Fu L 2010 Phys. Rev. Lett. 104 056402
[31] van Heck B, Lutchyn R M and Glazman L I 2016 Phys. Rev. B 93 235431
[32] Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygard J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14 400
[33] Shabani J, Kjaergaard M, Suominen H J, Kim Y, Nichele F, Pakrouski K, Stankevic T, Lutchyn R M, Krogstrup P, Feidenhans'l R, Kraemer S, Nayak C, Troyer M, Marcus C M and Palmstr C J 2016 Phys. Rev. B 93 155402
[34] Gul O, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T and Kouwenhoven L P 2018 Nat. Nanotech. 13 192
[35] Beenakker C 2013 Annu. Rev. Condens. Matter Phys. 4 113
[36] Stanescu T D, Lutchyn R M and Das Sarma S 2011 Phys. Rev. B 84 144522
[37] Sarma S D, Freedman M and Nayak C 2015 npj Quantum Inf. 1 15001
[38] Jiang L, Kane C L and Preskill J 2011 Phys. Rev. Lett. 106 130504
[39] Bonderson P and Lutchyn R M 2011 Phys. Rev. Lett. 106 130505
[40] Hyart T, van Heck B, Fulga I C, Burrello M, Akhmerov A R and Beenakker C W J 2013 Phys. Rev. B 88 035121
[41] Clarke D J, Sau J D and Das Sarma S 2016 Phys. Rev. X 6 021005
[42] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[43] Steiner J F and von Oppen F 2020 Phys. Rev. Research 2 033255
[44] Cao Z, Chen S, Zhang G and Liu D E 2023 Science China Physics, Mechanics & Astronomy 66 267003
[45] Wiseman H M, Utami D W, Sun H B, Milburn G J, Kane B E, Dzurak A and Clark R G 2001 Phys. Rev. B 63 235308
[46] Budich J C, Walter S and Trauzettel B 2012 Phys. Rev. B 85 121405
[47] Karzig T, Cole W S and Pikulin D I 2021 Phys. Rev. Lett. 126 057702
[48] Flensberg K 2011 Phys. Rev. Lett. 106 090503
[49] Cheng M, Lutchyn R M, Galitski V and Das Sarma S 2009 Phys. Rev. Lett. 103 107001
[50] Goldstein G and Chamon C 2011 Phys. Rev. B 84 205109
[51] Rainis D and Loss D 2012 Phys. Rev. B 85 174533
[52] Wang C, Gao Y Y, Pop I M, Vool U, Axline C, Brecht T, Heeres R W, Frunzio L, Devoret M H, Catelani G, Glazman L I and Schoelkopf R J 2014 Nat. Commun. 5 5836
[53] Knapp C, Beverland M, Pikulin D I and Karzig T 2018 Quantum 2 88
[54] Knapp C, Karzig T, Lutchyn R M and Nayak C 2018 Phys. Rev. B 97 125404
[55] Ralph T C Howard Wiseman and Gerard Milburn:Quantum measurement and control[J]. Springer US, 2012(1)
[56] Marlan O Scully and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[57] Khindanov A, Pikulin D and Karzig T 2021 SciPost Phys. 10 127
[58] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[59] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 1652
[60] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[61] Goan H S, Milburn G J, Wiseman H M and Bi Sun H 2001 Phys. Rev. B 63 125326
[62] Chang A M, Baranger H U, Pfeiffer L N, West K W and Chang T Y 1996 Phys. Rev. Lett. 76 1695
[63] Goan H S and Milburn G J 2001 Phys. Rev. B 64 235307
[64] Gurvitz S A 1997 Phys. Rev. B 56 15215
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[5] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[6] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[7] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[8] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[9] Explicit forms of zero modes in symmetric interacting Kitaev chain without and with dimerization
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(6): 067101.
[10] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[11] Topological phase boundary in a generalized Kitaev model
Da-Ping Liu(刘大平). Chin. Phys. B, 2016, 25(5): 057101.
[12] Spatially resolved gap closing in single Josephson junctions constructed on Bi2Te3 surface
Yuan Pang(庞远), Junhua Wang(王骏华), Zhaozheng Lyu(吕昭征), Guang Yang(杨光), Jie Fan(樊洁), Guangtong Liu(刘广同), Zhongqing Ji(姬忠庆), Xiunian Jing(景秀年), Changli Yang(杨昌黎), Li Lu(吕力). Chin. Phys. B, 2016, 25(11): 117402.
[13] Topological phase transition in a ladder of the dimerized Kitaev superconductor chains
Bo-Zhen Zhou(周博臻), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(10): 107401.
No Suggested Reading articles found!