CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point |
Chengfeng Yu(余承峰)1,2, Zongyuan Zhang(张宗源)1,2,†, Linxing Song(宋林兴)3,4, Yanwei Wu(吴彦玮)1,2, Xiaoqiu Yuan(袁小秋)1,2, Jie Hou(侯杰)1,2, Yubing Tu(涂玉兵)1,2, Xingyuan Hou(侯兴元)1,2, Shiliang Li(李世亮)3,4,5,‡, and Lei Shan(单磊)1,2,§ |
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract In the phase diagram of the nickel-based superconductor Ba$_{1-x}$Sr$_{x}$Ni$_{2}$As$_{2}$, $T_{\rm c}$ has been found to be enhanced sixfold near the quantum critical point (QCP) $x = 0.71$ compared with the parent compound. However, the mechanism is still under debate. Here, we report a detailed investigation of the superconducting properties near the QCP ($x \approx 0.7$) by utilizing scanning tunneling microscopy and spectroscopy. The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model. The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for $T_{\rm c}$ enhancement near the QCP. The lower than expected gap ratio of $\varDelta /(k_{\rm B}T_{\rm c})$ is rooted in the fact that Ba$_{1-x}$Sr$_{x}$Ni$_{2}$As$_{2 }$ falls into the dirty limit with a serious pair breaking effect similar to the parent compound.
|
Received: 10 January 2024
Revised: 18 February 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
74.55.+v
|
(Tunneling phenomena: single particle tunneling and STM)
|
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203, 2022YFA1403400, and 2021YFA1400400), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), the National Natural Science Foundation of China (Grant Nos. 12074002, 12104004, 12204008, and 12374133), the Chinese Academy of Sciences (Grant Nos. XDB33000000 and GJTD-2020-01), and the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01). |
Corresponding Authors:
Zongyuan Zhang, Shiliang Li, Lei Shan
E-mail: zongyuanzhang@ahu.edu.cn;slli@iphy.ac.cn;lshan@ahu.edu.cn
|
Cite this article:
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊) Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point 2024 Chin. Phys. B 33 066802
|
[1] Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264 [2] Davis J S and Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623 [3] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457 [4] Kothapalli K, Ronning F, Bauer E, Schultz A and Nakotte H 2010 J. Phys. Conf. Ser. 251 012010 [5] Frachet M, Wiecki P, Lacmann T, Souliou S, Willa K, Meingast C, Merz M, Haghighirad A A, Le Tacon M and Böhmer A 2022 npj Quantum Mater. 7 115 [6] Eckberg C C D J, Metz T, Collini J, Hodovanets H, Drye T, Zavalij P, Christensen M H, Fernandes R M, Lee S, Abbamonte P, Jeffrey W L and Paglione J 2020 Nat. Phys. 16 346 [7] Lee S, Collini J, Sun S X L, Mitrano M, Guo X, Eckberg C, Paglione J, Fradkin E and Abbamonte P 2021 Phys. Rev. Lett. 127 027602 [8] Sefat A S, McGuire M A, Jin R, Sales B C, Mandrus D, Ronning F, Bauer E and Mozharivskyj Y 2009 Phys. Rev. B 79 094508 [9] Li L, Luo Y, Wang Q, Chen H, Ren Z, Tao Q, Li Y, Lin X, He M and Zhu Z 2009 New J. Phys. 11 025008 [10] Johrendt D and Pöttgen R 2009 Physica C 469 332 [11] Lee S, De La Penã G, Sun S X L, Mitrano M, Fang Y, Jang H, Lee J S, Eckberg C, Campbell D and Collini J 2019 Phys. Rev. Lett. 122 147601 [12] Kudo K, Takasuga M, Okamoto Y, Hiroi Z and Nohara M 2012 Phys. Rev. Lett. 109 097002 [13] Pavlov N S, Kim T K, Yaresko A, Choi K Y, Nekrasov I A and Evtushinsky D V 2021 J. Phys. Chem. C 125 28075 [14] Kurita N, Ronning F, Tokiwa Y, Bauer E D, Subedi A, Singh D J, Thompson J and Movshovich R 2009 Phys. Rev. Lett. 102 147004 [15] Subedi A and Singh D J 2008 Phys. Rev. B 78 132511 [16] Lederer S, Schattner Y, Berg E and Kivelson S A 2015 Phys. Rev. Lett. 114 097001 [17] Lederer S, Berg E and Kim E A 2020 Phys. Rev. Res. 2 023122 [18] Song L, Si J, Fennell T, Stuhr U, Deng G, Wang J, Liu J, Hao L, Luo H, Liu M and Li S 2024 Phys. Rev. B 109 104518 [19] Qin T, Zhong R, Cao W, Shen S, Wen C, Qi Y and Yan S 2023 Nano Lett. 23 2958 [20] Ronning F, Kurita N, Bauer E, Scott B, Park T, Klimczuk T, Movshovich R and Thompson J D 2008 J. Phys.: Condens. Matter 20 342203 [21] Chen Z, Xu G, Hu W, Zhang X, Zheng P, Chen G, Luo J, Fang Z and Wang N 2009 Phys. Rev. B 80 094506 [22] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [23] Li A, Yin J X, Wang J, Wu Z, Ma J, Sefat A S, Sales B C, Mandrus D G, McGuire M A and Jin R 2019 Phys. Rev. B 99 134520 [24] Dynes R, Garno J, Hertel G and Orlando T 1984 Phys. Rev. Lett. 53 2437 [25] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [26] Eliashberg G 1960 Sov. Phys. JETP 11 696 [27] Schrieffer J, Scalapino D J and Wilkins J 1963 Phys. Rev. Lett. 10 336 [28] McMillan W and Rowell J 1965 Phys. Rev. Lett. 14 108 [29] Shan L, Gong J, Wang Y L, Shen B, Hou X Y, Ren C, Li C H, Yang H, Wen H H, Li S L and Dai P 2012 Phys. Rev. Lett. 108 227002 [30] Moore S A F J, Iavarone M 2015 Supercon. Sci. Technol. 28 045003 [31] Hess H, Robinson R and Waszczak J 1990 Phys. Rev. Lett. 64 2711 [32] Caroli C, De Gennes P and Matricon J 1964 Phys. Lett. 9 307 [33] Renner C, Kent A, Niedermann P, Fischer Ø and Lévy F 1991 Phys. Rev. Lett. 67 1650 [34] Lechner E M, Oli B D, Makita J, Ciovati G, Gurevich A and Iavarone M 2020 Phys. Rev. Appl. 13 044044 [35] Fang D, Yang H and Wen H H 2023 Sci. Sin. Phys. Mech. Astron. 53 127404 [36] Kogan V and Zhelezina N 2005 Phys. Rev. B 71 134505 [37] Narayan D M, Hao P, Kurleto R, Berggren B S, Linn A G, Eckberg C, Saraf P, Collini J, Zavalij P and Hashimoto M 2023 Sci. Adv. 9 eadi4966 [38] Dagan Y, Beck R and Greene R L 2007 Phys. Rev. Lett. 99 147004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|