Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067301    DOI: 10.1088/1674-1056/ad3b8a
RAPID COMMUNICATION Prev   Next  

Field induced Chern insulating states in twisted monolayer-bilayer graphene

Zhengwen Wang(王政文)1,2, Yingzhuo Han(韩英卓)1, Kenji Watanabe3, Takashi Taniguchi3, Yuhang Jiang(姜宇航)2,†, and Jinhai Mao(毛金海)1,‡
1 School of Physical Science and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China;
2 College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan
Abstract  Unraveling the mechanism underlying topological phases, notably the Chern insulators (ChIs) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, ChIs harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy (DT-STM) to investigate the ChIs in twisted monolayer-bilayer graphene (tMBG). At zero magnetic field, we observe correlated metallic states. While under a magnetic field, a metal-insulator transition happens and an integer ChI is formed emanating from the filling index $ s = 3$ with a Chern number $C = 1$. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures.
Keywords:  Chern insulators      strong correlation effects      two-dimensional van der Waals heterostructure      density-tuned scanning tunneling microscopy (DT-STM)  
Received:  09 March 2024      Revised:  07 April 2024      Accepted manuscript online:  07 April 2024
PACS:  73.22.Pr (Electronic structure of graphene)  
  73.21.Cd (Superlattices)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  85.30.Tv (Field effect devices)  
Corresponding Authors:  Yuhang Jiang, Jinhai Mao     E-mail:  yuhangjiang@ucas.ac.cn;jhmao@ucas.ac.cn

Cite this article: 

Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海) Field induced Chern insulating states in twisted monolayer-bilayer graphene 2024 Chin. Phys. B 33 067301

[1] Bok J M, Bae J J, Choi H Y, Varma C M, Zhang W, He J, Zhang Y, Yu L and Zhou X J 2016 Sci. Adv. 2 e1501329
[2] Garg A, Randeria M and Trivedi N 2008 Nat. Phys. 4 762
[3] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[4] Lake E and Senthil T 2021 Phys. Rev. B 104 174505
[5] Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T and Yazdani A 2021 Nature 600 240
[6] Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2022 Nature 606 494
[7] Arita R, Held K, Lukoyanov A V and Anisimov V I 2007 Phys. Rev. Lett. 98 166402
[8] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[9] Aynajian P, da Silva Neto E H, Gyenis A, Baumbach R E, Thompson J D, Fisk Z, Bauer E D and Yazdani A 2012 Nature 486 201
[10] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[11] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215
[12] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520
[13] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56
[14] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610
[15] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66
[16] Rademaker L, Protopopov I V and Abanin D A 2020 Phys. Rev. Res. 2 033150
[17] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2021 Nature 589 536
[18] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nat. Phys. 17 1210
[19] Grover S, Bocarsly M, Uri A, Stepanov P, Di Battista G, Roy I, Xiao J, Meltzer A Y, Myasoedov Y, Pareek K, Watanabe K, Taniguchi T, Yan B, Stern A, Berg E, Efetov D K and Zeldov E 2022 Nat. Phys. 18 885
[20] Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P and Young A F 2022 Nat. Phys. 18 42
[21] Yu J, Foutty B A, Han Z, Barber M E, Schattner Y, Watanabe K, Taniguchi T, Phillips P, Shen Z X, Kivelson S A and Feldman B E 2022 Nat. Phys. 18 825
[22] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91
[23] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198
[24] Li S Y, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H J, Jiang Y and Mao J 2022 Nat. Commun. 13 4225
[25] Zhang C, Zhu T, Soejima T, Kahn S, Watanabe K, Taniguchi T, Zettl A, Wang F, Zaletel M P and Crommie M F 2023 Nat. Commun. 14 3595
[26] Yankowitz M, Ma Q, Jarillo-Herrero P and LeRoy B J 2019 Nat. Rev. Phys. 1 112
[27] Behura S K, Miranda A, Nayak S, Johnson K, Das P and Pradhan N R 2021 Emergent Mater. 4 813
[28] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P and Yacoby A 2021 Nature 600 439
[29] Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, Ghosh A and Chandni U 2022 Nat. Phys. 18 639
[30] Li X F, Sun R X, Wang S Y, Li X, Liu Z B and Tian J G 2022 Chin. Phys. Lett. 39 037301
[31] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Phys. 17 26
[32] Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A and Yazdani A 2021 Nat. Commun. 12 2732
[33] Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio A and Pasupathy Á N 2022 Nat. Phys. 18 196
[34] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374
[35] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C, Novoselov K S and Shi Y 2021 Nat. Phys. 17 619
[36] Li S, Wang Z, Xue Y, Cao L, Watanabe K, Taniguchi T, Gao H and Mao J 2023 Chin. Phys. B 32 067304
[37] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356
[38] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71
[39] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F and Shan J 2020 Nature 587 214
[40] Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F and Cui Y T 2021 Nat. Phys. 17 715
[41] Kometter C R, Yu J, Devakul T, Reddy A P, Zhang Y, Foutty B A, Watanabe K, Taniguchi T, Fu L and Feldman B E 2023 Nat. Phys. 19 1861
[42] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P and Young A F 2018 Science 360 62
[43] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
[1] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[2] Effects of strain on the flat band in twisted bilayer graphene
Zhen Zhang(张镇), Lu Wen(文露), Youkai Qiao(乔友凯), and Zhiqiang Li(李志强). Chin. Phys. B, 2023, 32(10): 107302.
[3] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[6] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[7] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[8] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[9] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[10] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[11] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[12] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[13] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[14] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[15] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
No Suggested Reading articles found!