CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology |
Zhenyu Yuan(袁震宇)1,2, Fazhi Yang(杨发枝)1,2, Baiqing Lv(吕佰晴)3, Yaobo Huang(黄耀波)4, Tian Qian(钱天)1,5, Jinpeng Xu(徐金朋)1,2,6,7,†, and Hong Ding(丁洪)3,6 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 7 School of Physics, Shandong University, Ji'nan 250100 China |
|
|
Abstract The interplay between topology and magnetism is vital for realizing exotic quantum phenomena, significant examples including quantum anomalous Hall effect, axion insulators, and high-order topological states. These states host great potential for future applications in high-speed and low-consumption electronic devices. Despite being extensively investigated, practical platforms are still scarce. In this work, with molecular beam epitaxy (MBE), we provide the first experimental report on high-quality Bi(110)/CrTe$_{2}$ magnetic heterostructure. By employing in-situ high-resolution scanning tunneling microscopy, we are able to examine the interaction between magnetism and topology. There is a potential edge state at an energy level above the Fermi level, but no edge states observed near the Fermi level The absence of high-order topological corner states near $E_{\rm F}$ highlights the importance of lattice matching and interface engineering in designing high-order topological states. Our study provides key insights into the interplay between two-dimensional magnetic and topological materials and offers an important dimension for engineering magnetic topological states.
|
Received: 14 September 2023
Revised: 20 October 2023
Accepted manuscript online: 31 October 2023
|
PACS:
|
68.60.-p
|
(Physical properties of thin films, nonelectronic)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.75.Lf
|
(Electronic structure of magnetic nanoparticles)
|
|
Fund: The work at IOP is supported by grants from the National Natural Science Foundation of China (Grant No. U2032204), the Ministry of Science and Technology of China (Grant No. 2022YFA1403800), and the Chinese Academy of Sciences (Grant No. XDB33000000). |
Corresponding Authors:
Jinpeng Xu
E-mail: xujp@iphy.ac.cn
|
Cite this article:
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪) Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology 2024 Chin. Phys. B 33 026802
|
[1] Anderson P W 1972 Science 177 393 [2] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181 [3] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [4] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559 [5] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475 [6] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 [7] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 [8] Schindler F, Wang Z J, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A and Neupert T 2014 Nat. Phys. 10 664 [10] Aggarwal L, Zhu P, Hughes T L and Madhavan V 2021 Nat. Commun. 12 4420 [11] Nayak A K, Reiner J, Queiroz R, Fu H, Shekhar C, Yan B, Felser C, Avraham N and Beidenkopf H 2007 Science 318 766 [13] Meyer M, Schmid S, Jabeen F, Bastard G, Hartmann F and Höfling S 2021 Phys. Rev. B 104 085301 [14] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 [15] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys. 13 683 [16] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [17] Kundu A K, Gu G and Valla T 2021 ACS Appl. Mater. Interfaces 13 33627 [18] Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B 22 067304 [19] Peng L, Xian J J, Tang P, Rubio A, Zhang S C, Zhang W and Fu Y S 2018 Phys. Rev. B 98 245108 [20] Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F and Hofmann Ph 2009 Phys. Rev. Lett. 102 096802 [21] Yang F, Miao L, Wang Z F, Yao M Y, Zhu F, Song Y R, Wang M X, Xu J P, Fedorov A V, Sun Z, Zhang G B, Liu C, Liu F, Qian D, Gao C L and Jia J F 2012 Phys. Rev. Lett. 109 016801 [22] Yao M Y, Zhu F, Han C Q, Guan D D, Liu C, Qian D and Jia J 2016 Sci. Rep. 6 21326 [23] Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H and Wang X 2015 Nano Lett. 15 80 [24] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001 [25] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 [26] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 336 52 [27] Qin H, Chen X, Guo B, Pan T, Zhang M, Xu B, Chen J, He H, Mei J, Chen W, Ye F and Wang G 2021 Nano Lett. 21 1327 [28] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J and Sou I K 2014 Nat. Commun. 5 4247 [29] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [30] Sangwan V K and Hersam M C 2018 Ann. Rev. Phys. Chem. 69 299 [31] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699 [32] Wang W, Wu X and Zhang J 2015 J. Nanomater. 2015 e198126 [33] Zhang X, Hou L, Ciesielski A and Samorí P 2016 Adv. Energy Mater. 6 1600671 [34] Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W and Wang L 2021 Acta Phys. Sin. 70 127801 (in Chinese) [35] Xiao H, Mi M J and Wang Y L 2021 Acta Phys. Sin. 70 127503 (in Chinese) [36] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J and Núñez-Regueiro M 2015 J. Phys.: Condens. Matter 27 176002 [37] Zhang X, Lu Q, Liu W, Niu W, Sun J, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G and Xu Y 2021 Nat. Commun. 12 2492 [38] Chua R, Zhou J, Yu X, Yu W, Gou J, Zhu R, Zhang L, Liu M, Breese M B H, Chen W, Loh K P, Feng Y P, Yang M, Huang Y L and Wee A T S 2021 Adv. Mater. 33 2103360 [39] Sun X, Li W, Wang X, Sui Q, Zhang T, Wang Z, Liu L, Li D, Feng S, Zhong S, Wang H, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z, Dong B, Wu X, Yang T, Yu G, Wang B, Han Z, Han X and Zhang Z 2020 Nano Res. 13 3358 [40] Xian J J, Wang C, Nie J H, Li R, Han M, Lin J, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y, Wu S, Chen X, Han J, Xia Z, Ji W and Fu Y S 2022 Nat. Commun. 13 257 [41] Lv H Y, Lu W J, Shao D F, Liu Y and Sun Y P 2015 Phys. Rev. B 92 214419 [42] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898 [43] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408 [44] Zhang X, Ambhire S C, Lu Q, Niu W, Cook J, Jiang J S, Hong D, Alahmed L, He L, Zhang R, Xu Y, Zhang S L, Li P and Bian G 2021 ACS Nano 15 15710 [45] Nie J, Li R, Miao M, Fu Y and Zhang W 2023 Materials Futures 2 021001 [46] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308 [47] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424 [48] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802 [49] Wang J, Sun X, Du H, Ma C and Wang B 2022 Phys. Rev. B 105 115407 [50] Sun J T, Huang H, Wong S L, Gao H J, Feng Y P and Wee A T S 2012 Phys. Rev. Lett. 109 246804 [51] Zhang K H L, McLeod I M, Lu Y H, Dhanak V R, Matilainen A, Lahti M, Pussi K, Egdell R G, Wang X S, Wee A T S and Chen W 2011 Phys. Rev. B 83 235418 [52] He B, Tian G, Gou J, Liu B, Shen K, Tian Q, Yu Z, Song F, Xie H, Gao Y, Lu Y, Wu K, Chen L and Huang H 2019 Surface Science 679 147 [53] Jin K H, Oh E, Stania R, Liu F and Yeom H W 2021 Nano Lett. 21 9468 [54] Xi Y, Zhao M, Feng H, Sun Y, Man X, Xu X, Hao W, Dou S and Du Y 2021 J. Phys.: Condens. Matter 34 074003 [55] Momma K and Izumi F 2011 J. Appl. Crystallogr 44 1272 [56] Liu J Y, Sun H H, Guan D D, Li Y Y, Wang S Y, Liu C H, Zheng H and Jia J F 2018 Acta Phys. Sin. 67 170701 (in Chinese) [57] Chen C, Song Z, Zhao J Z, Chen Z, Yu Z M, Sheng X L and Yang S A 2020 Phys. Rev. Lett. 125 056402 [58] McGuire M A 2017 Crystals 7 121 [59] Meng L, Zhou Z, Xu M, Yang S, Si K, Liu L, Wang X, Jiang H, Li B, Qin P, Zhang P, Wang J, Liu Z, Tang P, Ye Y, Zhou W, Bao L, Gao H J and Gong Y 2021 Nat. Commun. 12 809 [60] Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J and Loh K P 2019 Adv. Mater. 31 1903779 [61] Cui F, Zhao X, Xu J, Tang B, Shang Q, Shi J, Huan Y, Liao J, Chen Q, Hou Y, Zhang Q, Pennycook S J and Zhang Y 2020 Adv. Mater. 32 1905896 [62] Ito N, Kikkawa T, Barker J, Hirobe D, Shiomi Y and Saitoh E 2019 Phys. Rev. B 100 060402 [63] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [64] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano 13 4436 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|