Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068503    DOI: 10.1088/1674-1056/ac4cc1
RAPID COMMUNICATION Prev   Next  

Wet etching and passivation of GaSb-based very long wavelength infrared detectors

Xue-Yue Xu(许雪月)1,2, Jun-Kai Jiang(蒋俊锴)1,2, Wei-Qiang Chen(陈伟强)1,2, Su-Ning Cui(崔素宁)1,2, Wen-Guang Zhou(周文广)1,2, Nong Li(李农)1,2, Fa-Ran Chang(常发冉)1, Guo-Wei Wang(王国伟)1,2, Ying-Qiang Xu(徐应强)1,2, Dong-Wei Jiang(蒋洞微)1,2, Dong-Hai Wu(吴东海)1,2, Hong-Yue Hao(郝宏玥)1,2,†, and Zhi-Chuan Niu(牛智川)1,2,‡
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The etching and passivation processes of very long wavelength infrared (VLWIR) detector based on the InAs/GaSb/AlSb type-II superlattice have been studied. By studying the effect of each component in the citric acid solution (citric acid, phosphoric acid, hydrogen peroxide, deionized water), the best solution ratio is obtained. After comparing different passivation materials such as sulfide + SiO2, Al2O3, Si3N4 and SU8, it is found that SU8 passivation can reduce the dark current of the device to a greater degree. Combining this wet etching and SU8 passivation, the R0A of VLWIR detector with a mesa diameter of 500 μm is about 3.6 Ω ·cm2 at 77 K.
Keywords:  InAs/GaSb/AlSb superlattice      very long wavelength infrared (VLWIR) detector      wet etching      passivation  
Received:  29 November 2021      Revised:  05 January 2022      Accepted manuscript online:  19 January 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.61.Ey (III-V semiconductors)  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2018YFA0209102 and 2019YFA070104), the National Natural Science Foundation of China (Grant Nos. 61790581 and 61274013), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB22).
Corresponding Authors:  Hong-Yue Hao, Hong-Yue Hao     E-mail:  haohongyue@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川) Wet etching and passivation of GaSb-based very long wavelength infrared detectors 2022 Chin. Phys. B 31 068503

[1] Walther M, Schmitz J, Rehm R, et al. 2005 J. Cryst. Growth 278 156
[2] Wei Y, Hood A, Yau H, et al. 2005 Appl. Phys. Lett. 86 4785
[3] Sullivan G J, Ikhlassi A, Bergman J, et al. 2005 J. Vac. Sci. Technol. B 23 1144
[4] Aifer E H, Jackson E M, Boishin G, et al. 2003 Appl. Phys. Lett. 82 4411
[5] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[6] Chen G, Nguyen B M, Hoang A M, et al. 2011 Appl. Phys. Lett. 99 651
[7] Chen G, Huang E K, Hoang A M, et al. 2012 Appl. Phys. Lett. 101 651
[8] Delaunay P Y, Nguyen B M, Hoffman D, et al. 2009 IEEE Journal of Quantum Electronics 45 157
[9] Huang E K, Nguyen B M, Hoffman D, et al. 2009 Proc. SPIE 7222 72220
[10] Huang E K, Hoffman D, Nguyen B, et al. 2009 Appl. Phys. Lett. 94 163511
[11] Plis E A, Kutty M N and Krishna S 2013 Laser & Photon. Rev. 7 45
[12] Chaghi R, Cervera C, Grech P, et al. 2009 Semiconductor Science and Technology 24 065010
[13] Dier O, Lin C, Grau M, et al. 2004 Semiconductor Science and Technology 19 1250
[14] Kutty M N, Plis E, Khoshakhlagh A, et al. 2010 J. Electron. Mater. 39 2203
[15] Hao H Y, Xiang W, Wang G W, et al. 2015 Chin. Phys. Lett. 32 107302
[16] Plis E A 2014 Advances in Electronics 2014 1
[17] Lebedev M V, Lvova T V, Pavlov S I, et al. 2017 Semiconductors 51 1093
[18] Ying Z, Ji X, Ming S, et al. 2015 Journal of Applied Physics 118 034507
[19] Hood A, Razeghi M, Aifer E H, et al. 2005 Appl. Phys. Lett. 87 3262
[20] Plis E A, Kutty M N and Krishna S 2013 Laser & Photon. Rev. 7 45
[21] Huang M L, Chang Y C, Chang C H, et al. 2005 Appl. Phys. Lett. 87 87
[22] Hood A, Delaunay P Y, Hoffman D, et al. 2007 Appl. Phys. Lett. 90 233513
[1] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[6] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[7] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[8] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[9] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[10] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[11] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[12] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[13] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[14] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[15] Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs
Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097309.
No Suggested Reading articles found!