Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118503    DOI: 10.1088/1674-1056/ac22a3

Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer

Xiangwei Qu(瞿祥炜)1,2, Jingrui Ma(马精瑞)1,2, Siqi Jia(贾思琪)1,2,3, Zhenghui Wu(吴政辉)1,2, Pai Liu(刘湃)1,2, Kai Wang(王恺)1,2, and Xiao-Wei Sun(孙小卫)1,2,3,†
1 Key Laboratory of Energy Conversion and Storage Technologies(Ministry of Education), Southern University of Science and Technology, Shenzhen 518055, China;
2 Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
3 Shenzhen Planck Innovation Technology Pte. Ltd, Liu-He Road, Shenzhen 518173, China
Abstract  In blue quantum dot light emitting diodes (QLEDs), electron injection is insufficient, which would degrade device efficiency and stability. Herein, we employ chlorine passivated ZnO nanoparticles as electron transport layer to facilitate electron injection into QDs effectively. Moreover, it suppresses exciton quenching at the QD/ZnO interface by blocking charge transfer channel. As a result, the maximum external quantum efficiency of blue QLED was increased from 2.55% to 4.60%, and the operation lifetime of blue QLED was nearly 4 times longer than that of the control device. Our work indicates that election injection plays an important role in blue QLED efficiency and stability.
Keywords:  quantum dot light emitting diodes (QLEDs)      chlorine passivation      electron injection  
Received:  18 June 2021      Revised:  04 August 2021      Accepted manuscript online:  01 September 2021
PACS:  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0401702 and 2017YFE0120400), the National Natural Science Foundation of China (Grant Nos. 62005114, 62005115, and 61875082), Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010925001 and 2019B010924001), Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting (Grant No. 2017KSYS007), Natural Science Foundation of Guangdong Province, China (Grant No. 2017B030306010), Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515110437), Shenzhen Peacock Team Project (Grant No. KQTD2016030111203005), and High Level University Fund of Guangdong Province, China (Grant No. G02236004).
Corresponding Authors:  Xiao-Wei Sun     E-mail:

Cite this article: 

Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫) Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer 2021 Chin. Phys. B 30 118503

[1] Colvin V L, Schlamp M C and Allvisatos 1994 Nature 370 354
[2] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[3] Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717
[4] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341
[5] Qian L, Zheng Y, Xue J G and Holloway P 2011 Nat. Photon. 5 543
[6] Shen H B, Cao W R, Shewmon N, Yang C C, Li N S and Xue J G 2015 Nano Lett. 15 1211
[7] Zou Y T, Ban M Y, Cui W, Huang Q, Wu C, Liu J W, Wu H H, Song T and Sun B Q 2017 Adv. Funct. Mater. 27 1603325
[8] Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P and Peng X G 2014 Nature 515 96
[9] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J, Xue J G, Holloway P and Qian L 2015 Nat. Photon. 9 259
[10] S.Mashford B, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P 2013 Nat. Photon. 7 407
[11] Shen H B, Gao Q, Zhang Y B, Lin Y, Lin Q L, Li Z H, Chen L, Zeng Z P, Li X G, Jia Y, Wang S J, Du Z L, Li L S and Zhang Z Y 2019 Nat. Photon. 13 192
[12] Song J J, Wang O Y, Shen H B, Lin Q L, Li Z H, Wang L, Zhang X T and Li L S 2019 Adv. Funct. Mater. 29 1808377
[13] Cao W R, Xiang C Y, Yang Y X, Chen Q, Chen L W, Yan X L and Qian L 2018 Nat. Commun. 9 2608
[14] Kim T, Kim K H, Kim S, Choi S M, Jang H, Seo H K, Lee H, Chung D Y and Jang E 2020 Nature 586 385
[15] Pu C D, Dai X L, Shu Y F, Zhu M Y, Deng Y Z, Jin Y Z and Peng X G 2020 Nat. Commun. 11 937
[16] Wang L S, Lin J, Hu Y S, Guo X Y, Lv Y, Tang Z B, Zhao J L, Fan Y, Zhang N, Wang Y J and Liu X Y ACS 2017 Appl. Mater. Interfaces 9 38755
[17] Lin Q L, Wang L, Li Z H, Shen H B, Guo L J, Kuang Y M, Wang H Z and Li L S 2018 ACS Photon. 5 939
[18] Qu X Y, Zhang N, Cai R, Kang B N, Chen S M, Xu B, Wang K and Sun X W 2019 Appl. Phys. Lett. 114 071101
[19] Li D Y, Bai J K, Zhang T T, Chang C, Jin X, Huang Z, Xu B and Li Q H 2019 Chem. Commun. 55 3501
[20] Shirasaki Y, J.Supran G, G.Bawendi M aand Bulovic V 2012 Nat. Photon. 7 13
[21] Kwak J, Bae W K, Lee D, Park I, Lim J, Park M, Cho H, Woo H, Yoon D, Char K, Lee S and Lee C 2012 Nano Lett. 12 2362
[22] Lee K H, Lee J H, Song W S, Ko H, Lee C, Lee J and Yang H 2013 ACS Nano 7 7295
[23] Jia H R, Wang F Z and Tan Z A 2020 Nanoscale 12 13186
[24] Cheng T, Wang F Z, Sun W D, Wang Z B, Zhang J, You B G, Li Y, Hayat T, Alsaed A and Tan Z A 2019 Adv. Electron. Mater. 5 1800794
[25] Zhong Z J, Zou J H, Jiang Y B, Lan L H, Song C, He Z W, Mu L, Wang L, Wang J, Peng J B and Cao Y 2018 Organic Electronics 58 245
[26] Shi Y L, Liang F, Hu Y, Zhuo M P, Wang X D and Liao L S 2017 Nanoscale 9 14792
[27] Chen S, Cao W R, Liu T L, Tsang S W, Yang Y X, Yan X L and Qian L 2019 Nat. Commun. 10 765
[28] Sun Y Z, Jiang Y B, Peng H R, Wei J L, Zhang S D and Chen S M 2017 Nanoscale 9 8962
[29] Ding K, Chen H T, Fan L W, Wang B, Huang Z, Zhuang S Q, Hu B and Wang L 2017 ACS Appl. Mater. Interfaces 9 20231
[30] Li Z W 2017 Vacuum 137 38
[31] Zhang H and Chen S M 2019 J. Mater. Chem. C 7 2291
[32] Jiang W and Chae H 2020 J. Phys. Chem. C 124 25221
[33] Moon H, Lee W and Chae H 2019 IEEE Electron Dev. Lett. 40 1872
[34] Chen F, Liu Z Y, Guan Z Y, Liu Z M, Deng Z B, Teng F and Tang A W 2018 ACS Photon. 5 3704
[35] Choi J, Kim Y, Jo J W, Kim J, Sun B, Walters G, Li Y Y, Tan C S, Quan L N, Kam A P T, Hoogland S, Lu Z H, Voznyy O and H. Sargent E 2017 Adv. Mater. 29 1702350
[36] Lu Junfeng, Xu C X, Dai J, Li J T, Wang Y Y, Lin Y and Li P L 2015 Nanoscale 7 3396
[37] Kim O S, Kang B H, Lee J S, Lee S W, Cha S H, Lee J W, Kim S W, Kim S H and Kang S W 2016 IEEE Electron Dev. Lett. 37 1022
[38] Shrotriya V and Yang Y 2005 J. Appl. Phys. 97 054504
[39] Chen D S, Chen D, Dai X L, Zhang Z X, Lin J, Deng Y Z, Hao Y L, Zhang C, Zhu H M, Gao F and Jin Y Z 2020 Adv. Mater. 2006178
[40] Ding S H, Wu Z H, Qu X Y, Tang H D, Wang K, Xu B and Sun X W 2020 Appl. Phys. Lett. 117 093501
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[3] Improvement of electron injection of organic light-emitting devices by inserting a thin aluminum layer into cesium carbonate injection layer
Xin Li-Wen (辛利文), Wu Xiao-Ming (吴晓明), Hua Yu-Lin (华玉林), Xiao Zhi-Hui (肖志慧), Wang Li (王丽), Zhang Xin (张欣), Yin Shou-Gen (印寿根). Chin. Phys. B, 2015, 24(3): 037802.
[4] Degradation mechanism of enhancement-mode AlGaN/GaN HEMTs using fluorine ion implantation under the on-state gate overdrive stress
Sun Wei-Wei (孙伟伟), Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Wang Chong (王冲), Du Ming (杜鸣), Zhang Kai (张凯), Chen Wei-Wei (陈伟伟), Cao Yan-Rong (曹艳荣), Mao Wei (毛维), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(1): 017303.
[5] Dye-sensitized solar cells:Atomic scale investigation of interface structure and dynamics
Ma Wei (马薇), Zhang Fan (张帆), Meng Sheng (孟胜). Chin. Phys. B, 2014, 23(8): 086801.
[6] Impact of substrate injected hot electrons on hot carrier degradation in a 180-nm NMOSFET
Liang Bin (梁斌), Chen Jian-Jun (陈建军), Chi Ya-Qing (池雅庆). Chin. Phys. B, 2014, 23(11): 117304.
[7] Degradation of the transconductance of gate-modulated generation current in nMOSFET
Chen Hai-Feng (陈海峰), Guo Li-Xin (过立新), Du Hui-Min (杜慧敏 ). Chin. Phys. B, 2012, 21(8): 088501.
[8] Nonadiabatic dynamics of electron injection into organic molecules
Zhu Li-Ping(朱丽萍), Qiu Yu(邱宇), and Tong Guo-Ping(童国平) . Chin. Phys. B, 2012, 21(7): 077302.
[9] Organic light emitting diodes using magnesium doped organic acceptor as electron injection layer and silver as cathode
Cao Guo-Hua(曹国华), Qin Da-Shan(秦大山), Guan Min(关敏), Cao Jun-Song(曹峻松), Zeng Yi-Ping(曾一平), and Li Jin-Min(李晋闽). Chin. Phys. B, 2008, 17(5): 1911-1915.
No Suggested Reading articles found!