Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118801    DOI: 10.1088/1674-1056/abb3e3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Improving the performance of crystalline Si solar cell by high-pressure hydrogenation

Xi-Yuan Dai(戴希远)1, Yu-Chen Zhang(张宇宸)1, Liang-Xin Wang(王亮兴)2, Fei Hu(胡斐)1, Zhi-Yuan Yu(于志远)1, Shuai Li(李帅)1, Shu-Jie Li(李树杰)3, Xin-Ju Yang(杨新菊)3, and Ming Lu(陆明)1, †
1 Department of Optical Science and Engineering and Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China
2 School of Microelectronics, Fudan University, Shanghai 200433, China
3 Department of Physics, Fudan University, Shanghai 200433, China
Abstract  

We report an approach of high-pressure hydrogenation to improve the performance of crystalline Si (c-Si) solar cells. As-received p-type c-Si wafer-based PN junctions were subjected to high-pressure (2.5 MPa) hydrogen atmosphere at 200 °C, followed by evaporating antireflection layers, passivation layers, and front and rear electrodes. The efficiency of the so prepared c-Si solar cell was found to increase evidently after high-pressure hydrogenation, with a maximal enhancement of 10%. The incorporation of hydrogen by Si solar cells was identified, and hydrogen passivation of dangling bonds in Si was confirmed. Compared to the regular approach of hydrogen plasma passivation, the approach of high-pressure hydrogenation reported here needs no post-hydrogenation treatment, and can be more convenient and efficient to use in improving the performances of the c-Si and other solar cells.

Keywords:  high-pressure hydrogenation      Si solar cell      bulk passivation  
Received:  01 April 2020      Revised:  21 August 2020      Accepted manuscript online:  01 September 2020
Fund: the National Natural Science Foundation of China (Grant No. 62075044), the Shanghai Science and Technology Committee, China (Grant No. 18JC1411500), and the CIOMP–Fudan University Joint Foundation (Grant No. FC2017-001).
Corresponding Authors:  Corresponding author. E-mail: minglu55@fudan.edu.cn第一通讯作者   

Cite this article: 

Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明) Improving the performance of crystalline Si solar cell by high-pressure hydrogenation 2020 Chin. Phys. B 29 118801

Fig. 1.  

The cross-sectional structure of the c-Si solar cell.

Fig. 2.  

(a)–(c) The AFM images of Si(100) wafers of 0-, 6-, and 9-day high-pressure hydrogenation, respectively. (d) The EDX spectrum of islands on the hydrogenated surface.

Fig. 3.  

Reflection spectra of Si(100) surfaces and PN junction after 0- and 6-day high-pressure hydrogenation.

Fig. 4.  

(a) Current density–voltage characteristics, (b) the EQE curves of the c-Si solar cells with 0-, 3-, 6-, and 9-day high-pressure hydrogenation.

Fig. 5.  

Efficiency of the c-Si solar cells versus high-pressure hydrogenation time.

Sample J/mA⋅cm−2 VOC/mV FF/% η/% Rs Rsh
0-day 37.3 ± 0.2 563 ± 3 82.2 ± 1.9 17.2 ± 0.4 1.0 ± 0.4 798 ± 341
3-day 39.3 ± 0.4 556 ± 3 83.7 ± 1.8 18.3 ± 0.3 0.7 ± 0.2 1005 ± 274
6-day 42.1 ± 0.6 551 ± 3 81.9 ± 2.2 19.0 ± 0.5 0.5 ± 0.1 1420 ± 460
9-day 40.3 ± 1.1 549 ± 2 80.0 ± 2.8 17.7 ± 0.5 0.8 ± 0.2 1009 ± 419
Table 1.  

Photovoltaic parameters of solar cells with different high-pressure hydrogenation time.

Sample 0 day 3 days 6 days 9 days
Sheet resistance/Ω⋅sq−1 24.9 ± 1.7 26.7 ± 1.6 25.4 ± 1.8 25.8 ± 1.8
Table 2.  

The sheet resistance of PN junction after different high-pressure hydrogenation time.

Fig. 6.  

(a) Scan image of minority carrier lifetimes of Si(100) wafers after 0-, 1-, 3-, 6-, and 9-day high-pressure hydrogenation. (b) Minority carrier lifetime versus high-pressure hydrogenation time.

Fig. 7.  

(a) FTIR absorbance difference spectra. (b) Degree of hydrogen passivation versus high-pressure hydrogenation time.

Fig. 8.  

The XRD spectra of Si(100) wafers after 0-, 3-, 6-, and 9-day high-pressure hydrogenation.

[1]
Nijs J F, Szlufcik J, Poortmans J, Sivoththaman S, Mertens R P 2001 Sol. Energ. Mat. Sol. C 65 249 DOI: 10.1016/S0927-0248(00)00100-8
[2]
Saga T 2010 NPG Asia Mater. 2 96 DOI: 10.1038/asiamat.2010.82
[3]
Ribeyron P 2017 Nat. Energy 2 17067 DOI: 10.1038/nenergy.2017.67
[4]
Goetzberger A, Hebling C, Schock H 2003 Materials Science and Engineering: R: Reports 40 1 DOI: 10.1016/S0927-796X(02)00092-X
[5]
Miles R W 2006 Vacuum 80 1090 DOI: 10.1016/j.vacuum.2006.01.006
[6]
Sharma S, Jain K K, Sharma A 2015 Materials Sciences and Applications 6 1145 DOI: 10.4236/msa.2015.612113
[7]
Lee Y, Park C, Balaji N, Lee Y J, Dao V A 2015 Isr. J. Chem. 55 1050 DOI: 10.1002/ijch.v55.10
[8]
Haase F, Hollemann C, Schaefer S, Merkle A, Rienaecker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C 186 184 DOI: 10.1016/j.solmat.2018.06.020
[9]
Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Progress in Photovoltaics: Research and Applications 23 1 DOI: 10.1002/pip.2573
[10]
Wang L, Zhou Z, Hao H, Lu M 2016 Nanotechnology 27 425207 DOI: 10.1088/0957-4484/27/42/425207
[11]
Zarmai M T, Ekere N N, Oduoza C F, Amalu E H 2015 Appl. Energ. 154 173 DOI: 10.1016/j.apenergy.2015.04.120
[12]
Zhou Z, Wang L, Shi W, Sun S, Lu M 2016 Nanotechnology 27 145203 DOI: 10.1088/0957-4484/27/14/145203
[13]
Zhou Z, Hu F, Zhou W, Chen H, Ma L, Zhang C, Lu M 2017 Nanoscale Res. Lett. 12 623 DOI: 10.1186/s11671-017-2388-y
[14]
Hu F, Zhou Z, Ma L, Zhang C, Zhou W, Lu M 2017 Physica E 94 174 DOI: 10.1016/j.physe.2017.08.008
[15]
Wang L, Zhou Z, Zhang T, Chen X, Lu M 2016 Nanoscale Res. Lett. 11 453 DOI: 10.1186/s11671-016-1678-0
[16]
Lee S J, Kim S H, Kim D W, Kim K H, Kim B K, Jang J 2011 Sol. Energ. Mat. Sol. C. 95 81 DOI: 10.1016/j.solmat.2010.05.015
[17]
Martinuzzi S, Périchaud I, Warchol F 2003 Sol. Energ. Mat. Sol. C 80 343 DOI: 10.1016/j.solmat.2003.08.015
[18]
Lüdemann R 1999 Materials Science and Engineering: B 58 86 DOI: 10.1016/S0921-5107(98)00288-8
[19]
Hu Z H, Liao X B, Liu Z M, Xia C F, Chen T J 2003 Chin. Phys. 12 112 DOI: 10.1088/1009-1963/12/1/321
[20]
Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J 2011 Appl. Phys. Lett. 99 123506 DOI: 10.1063/1.3641899
[21]
Martin I, Vetter M, Orpella A, Voz C, Puigdollers J, Alcubilla R, Kharchenko A V, Roca I, Cabarrocas P 2004 Appl. Phys. Lett. 84 1474 DOI: 10.1063/1.1647702
[22]
Gorka B, Rau B, Dogan P, Becker C, Ruske F, Gall S, Rech B 2009 Plasma Process. Polym. 6 S36 DOI: 10.1002/ppap.200930202
[23]
Wang F, Zhang X, Wang L, Jiang Y, Wei C, Sun J, Zhao Y 2014 ACS Appl. Mater. Inter. 6 15098 DOI: 10.1021/am5031837
[24]
Seager C H, Ginley D S 1981 J. Appl. Phys. 52 1050 DOI: 10.1063/1.328802
[25]
Do Kim Y, Park S, Song J, Tark S J, Kang M G, Kwon S, Yoon S, Kim D 2011 Sol. Energ. Mat. Sol. C 95 73 DOI: 10.1016/j.solmat.2010.04.049
[26]
Qiu Y, Kunz O, Fejfar A, Ledinsky M, Chan B T, Gordon I, Van Gestel D, Venkatachalm S, Egan R 2014 Sol. Energ. Mat. Sol. C 122 31 DOI: 10.1016/j.solmat.2013.11.017
[27]
Wang X Q, Yang D R, Xi Z Q, Que D L 2002 Semiconductor Photonics and Technology 8 228 http://qikan.cqvip.com/Qikan/Article/Detail?id=1000421473
[28]
Wang D C, Zhang C, Zeng P, Zhou W, Ma L, Wang H, Zhou Z, Hu F, Zhang S, Lu M 2018 Sci. Bull. 63 75 DOI: 10.1016/j.scib.2018.01.006
[29]
Zhang C, Zeng P, Zhou W, Zhang Y, He X, Jin Q, Wang D, Wang H, Zhang S, Lu M, Wu X 2019 IEEE J. Selec. Top. Quantum Electron. 26 1 DOI: 10.1109/JSTQE.2019.2918934
[30]
Zhang X, Liu B W, Xia Y, Li C B, Liu J, Shen Z N 2012 Acta Phys. Sin. 61 444 in Chinese DOI: 10.7498/aps.61.187303
[31]
Lee M C M, Wu M C 2006 Journal of Microelectromechanical Systems 15 338 DOI: 10.1109/JMEMS.2005.859092
[32]
Habuka H, Tsunoda H, Mayusumi M, Tate N, Katayama M 1995 J. Electrochem. Soc. 142 3092 DOI: 10.1149/1.2048694
[33]
Murakami K, Fukata N, Sasaki S, Ishioka K, Kitajima M, Fujimura S, Kikuchi J, Haneda H 1996 Phys. Rev. Lett. 77 3161 DOI: 10.1103/PhysRevLett.77.3161
[34]
van de Walle C G, Nickel N H 1995 Phys. Rev. B 51 2636 DOI: 10.1103/PhysRevB.51.2636
[35]
Kim K, Varlamov S, Evans R, Egan R 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) 16–21 June, 2013 Tampa, FL, USA 0568 DOI: 10.1109/PVSC.2013.6744215
[36]
Sassella A, Borghesi A, Corni F, Monelli A, Ottaviani G, Tonini R, Pivac B, Bacchetta M, Zanotti L 1997 Journal of Vacuum Science & Technology A 15 377 DOI: 10.1116/1.580495
[37]
Cortazar O, Aceves M, Yu Z, Kiebach R 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 10–13 Jan. 2009 Toluca, Mexico 1 5 DOI: 10.1109/ICEEE.2009.5393400
[38]
Van de Walle C G 1994 Phys. Rev. B 49 4579 DOI: 10.1103/PhysRevB.49.4579
[39]
Zhang Y C, Zhang C, Li S, Dai X Y, Ma X F, Gao R H, Zhou W J, Lu M 2020 Opt. Express 28 23320 DOI: 10.1364/OE.396654
[40]
Syed Ahamed Basheer M G, Rajni K S, Vidhya V S, Swaminathan V, Thayumanavan A, Murali K R, Jayachandran M 2011 Crystal Research & Technology 46 261 DOI: 10.1002/crat.201000546
[41]
Hsu C L, Lu Y C 2012 Nanoscale 4 5710 DOI: 10.1039/c2nr31428b
[42]
Yang L, Wang Z H, Zhang Z D 2016 J. Appl. Phys. 119 045304 DOI: 10.1063/1.4940950
[1] Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers
Chen Le (陈乐), Wang Qing-Kang (王庆康), Shen Xiang-Qian (沈向前), Chen Wen (陈文), Huang Kun (黄堃), Liu Dai-Ming (刘代明). Chin. Phys. B, 2015, 24(10): 104201.
No Suggested Reading articles found!