Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098201    DOI: 10.1088/1674-1056/ab33ec
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells

Jianhui Bao(包建辉)1,2, Ke Tao(陶科)2, Yiren Lin(林苡任)1, Rui Jia(贾锐)2, Aimin Liu(刘爱民)3
1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China;
2 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 China;
3 School of Physics & Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  

Interdigitated back contact silicon hetero-junction (IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures. The front surface field (FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells. The electric field passivated layer n+-a-Si:H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ. It is indicated that the n+-a-Si:H layer with wider band gap can reduce the light absorption on the front side efficaciously, which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc. The highly doped n+-a-Si:H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation. It is noteworthy that when the electric field intensity exceeds 1.3×105 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%. In this study, the IBC-SHJ solar cell with a front n+-a-Si:H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.

Keywords:  Si-based doped materials      passivation      interdigitated back contact silicon hetero-junction (IBC-SHJ) solar cell      simulation  
Received:  15 May 2019      Revised:  24 June 2019      Accepted manuscript online: 
PACS:  82.20.Wt (Computational modeling; simulation)  
  77.55.df (For silicon electronics)  
  82.45.Bb (Corrosion and passivation)  
Fund: 

Project supported by the National Key Research Program of China (Grant Nos. 2018YFB1500500 and 2018YFB1500200), the National Natural Science Foundation of China (Grant Nos. 51602340, 51702355, and 61674167), and JKW Project, China (Grant No. 31512060106).

Corresponding Authors:  Ke Tao, Rui Jia, Aimin Liu     E-mail:  taoke@ime.ac.cn;imesolar@126.com;aiminl@dult.edu.com

Cite this article: 

Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民) The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells 2019 Chin. Phys. B 28 098201

[1] Schwartz R J and Lammert M D 1975 IEEE Electron Devices Meeting 1975 International
[2] Smith D D and Reich G 2016 Photovoltaic Specialists Conference (PVSC) IEEE 43rd
[3] Adachi D, Hernandez J L and Yamamoto K 2015 Appl. Phys. Lett. 107 233506
[4] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nishikaw T, Fujita K and Maruyama E 2014 IEEE J. Photovoltaics 4 96
[5] Lu M, Bowden S, Das U and Birkmire R 2007 Appl. Phys. Lett. 91 063507
[6] Masuko K, Shigematsu M, Hashiguchi T and Fujishima D 2014 IEEE J. Photovoltaics 4 1433
[7] Yoshikawa K, Kawasaki H, Yoshida W and Irie T 2017 Nat. Energy 2 17032
[8] Richter A, Hermle M and Glunz S W 2013 IEEE J. Photovoltaics 3 1184
[9] Lu M, Das U, Bowden S, Hegedus S and Birkmire R 2009 Proceedings of 34th IEEE PVSC USA
[10] Dioufa D, Kleider J P, Desrues T and Ribeyron P J 2009 Mater. Sci. Eng. B 159-160 291
[11] Xiao Y P, Wei X Q and Zhou L 2017 Chin. Phys. B 26 048104
[12] Das U K, Burrows M Z, Lu M, Bowden S and Birkmire R 2008 Appl. Phys. Lett. 92 063504
[13] Lu M, Das U, Bowden S, Hegedus S and Birkmire R 2011 Prog. Photovolt:Res. Appl. 19 326
[14] Yu J, Zhou J, Bian J, Shi J, Meng F and Liu Z 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)
[15] Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Seif J P, Wolf S D and Ballif C 2012 IEEE J. Photovoltaic 2 7
[16] Qiu H B, Li H Q, Liu B W, Zhang X and Shen Z N 2014 Chin. Phys. B 23 027301
[17] Xiao H Q, Zhou C L, Cao X N, Wang W J, Zhao L, Li H L and Diao H W 2009 Chin. Phys. Lett. 26 088102
[18] Zhang Y, Cao Y and Yang M 2017 Chin. Phys. Lett. 34 038101
[19] Zhang J N, Wang L, Dai Z, Tang X, Liu Y B and Yang D R 2017 Chin. Phys. Lett. 34 028801
[20] Zhan F, Wang H L, He J F, Wang J, Huang S S, Ni H Q and Niu Z C 2011 Chin. Phys. Lett. 28 047802
[21] Salomon B P, Tomasib A, Lachenalc D and Badela N 2018 Sol. Energy 175 60
[22] Rath J K 2003 Sol. Energy Mater. Sol. Cells 76 431
[23] Munos D 2011 7th Workshop on the Future Direction of Photovoltaics (by JSPS 175th committee)
[24] Bludau W, Onton A and Heinke W 1974 J. Appl. Phys. 45 1846
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[14] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!