Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098802    DOI: 10.1088/1674-1056/ab37f3
SPECIAL TOPIC—110th Anniversary of Lanzhou University Prev   Next  

The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Yun-Long Deng(邓云龙)1, Zhi-Yuan Xu(徐知源)1, Kai Cai(蔡凯)1, Fei Ma(马飞)1, Juan Hou(侯娟)2, Shang-Long Peng(彭尚龙)1
1 National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
2 College of Science, Key Laboratory of Ecophysics, Department of Physics, Shihezi University, Shihezi 832003, China
Abstract  

ZnSe as a surface passivation layer in quantum dot-sensitized solar cells plays an important role in preventing charge recombination and thus improves the power conversion efficiency (PCE). However, as a wide bandgap semiconductor, ZnSe cannot efficiently absorb and convert long-wavelength light. Doping transition metal ions into ZnSe semiconductors is an effective way to adjust the band gap, such as manganese ions. In this paper, it is found by the method of density functional theory calculation that the valence band of ZnSe moves upward with manganese ions doping, which leads to acceleration of charge separation, wider light absorption range, and enhancing light harvesting. Finally, by using ZnSe doped with manganese ions as the passivation layer, the TiO2/CdS/CdSe co-sensitized solar cell has a PCE of 6.12%, and the PCE of the solar cell increases by 9% compared with the undoped one (5.62%).

Keywords:  solar cells      passivation layer      manganese ions      doping  
Received:  31 May 2019      Revised:  11 July 2019      Accepted manuscript online: 
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
  81.07.Ta (Quantum dots)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61376011, 61704114, 51402141, and 61604086), the Gansu Provincial Natural Science Foundation, China (Grant No. 17JR5RA198), the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2018-119 and lzujbky-2018-ct08), and the Fund from Shenzhen Science and Technology Innovation Committee, China (Grant No. JCYJ20170818155813437), and the Key Areas Scientific and Technological Research Projects in Xinjiang Production and Construction Corps (Grant No. 2018AB004).

Corresponding Authors:  Fei Ma, Shang-Long Peng     E-mail:  maf@lzu.edu.cn;pengshl@lzu.edu.cn

Cite this article: 

Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙) The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells 2019 Chin. Phys. B 28 098802

[1] Holdren. J P 2008 Science 319 424
[2] Verma S, Kaniyankandy S and Ghosh H 2013 J. Phys. Chem. C 117 10901
[3] Pan Z, Rao H, Mora-Sero I, Bisquert J and Zhong X 2018 Chem. Soc. Rev. 47 7659
[4] Gu Y, Tang L B, Guo X P, Xiang J Z, Teng K S and Liu S P 2019 Chin. Phys. B 28 047803
[5] Tian J and Cao G 2015 J. Phys. Chem. Lett. 6 1859
[6] Wang J, Li Y and Shen Q 2016 J. Mater. Chem. A 4 877
[7] Wu W Q, Xu Y F, Chen H Y, Kuang D B and Su C Y 2019 Acc. Chem. Res. 52 633
[8] Dong J, Xu X, Shi J J, Li D M, Luo Y H, Meng Q B and Chen Q 2015 Chin. Phys. Lett. 32 078401
[9] Huang J, Xu B, Yuan C Z, Chen H, Sun J L, Sun L C and Agren H 2014 ACS Appl. Mater. Interfaces 6 18808
[10] Hou J, Zhao H, Huang F, Chen L, Wu Q, Liu Z, Peng S L, Wang N and Cao G Z 2018 J. Mater. Chem. A 6 9866
[11] Xu Y F, Wu W Q, Rao H S, Chen H Y, Kuang D B and Su C Y 2015 Nano Energy 11 621
[12] Li K Y, Ren L and Shen T D 2018 Chin. Phys. B 27 067305
[13] Huang F, Hou J and Zhang Q 2016 Nano Energy 26 114
[14] Trepyow A and Nix F C 1939 JOSA 29 457
[15] Shen T, Tian J, Lv L, Fei C, Wang Y, Pullerits T and Cao G 2016 Electrochim. Acta 191 62
[16] Horoz S, Dai Q, Maoney F and Tang J 2015 Phys. Rev. Appl. 3 024011
[17] Gou X, Dong H, Niu G, Qiu Y and Wang L 2014 RSC. Adv. 4 21294
[18] Wu Z M, Wang W P, Cao Y Y, He J L, Luo Q, Bhutto W A, Li S P and Kang J Y 2014 J. Mater. Chem. A 2 14571
[19] Santra P and Kamat P 2012 J. Am. Chem. Soc. 134 2508
[20] Tian J, Lv L, Fei C, Wang Y, Liu X and Cao G Z 2014 J. Mater. Chem. A 2 19653
[21] Wang F, Yang M, Ji S, Yang L, J Zhao J, Liu H, Sui Y, Sun Y, Yang J and Zhang X 2018 J. Power Sources 395 85
[22] Zhang Z, Si M S, Wang Y H, Gao X P, Sung D, Hong S and He J J 2014 J. Chem. Phys. 140 174707
[23] Huang F, Hou J, Zhang Q F, Wang Y, Masse, R C, Peng S L, Wang H L, Liu J S and Cao G Z 2016 Nano Energy 26 114
[24] Zhang Z Y, Xie J F, Yang D Z, Wang Y H, Si M S and Xue D S 2015 Appl. Phys. Express 8 055201
[25] Gopi V V M, Venkata-Haritha M, Soo-Kyoung Kim and Hee-Je Kim 2015 Nanoscale 7 12552
[26] Wang G S, Wei H Y, Luo Y H, Wu H J, Li D M, Zhong X H and Meng Q B 2016 J. Power Sources 302 266
[27] Hoseinzadeh T, Ghoranneviss M, Akbarnejad E and Ghorannevis Z 2018 Chin. Phys. Lett. 35 036101
[28] Dabbousi B O, RodriguezViejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F and Bawendi M G 1997 Phys. Chem. B 101 9463
[29] Zhang Z Y, Si M S, Peng S L, Zhang F, Wang Y H and Xue D S 2015 J. Solid State Chem. 231 64
[30] Chen X L, Huang B J, Feng Y, Wang P J, Zhang C W and Li P 2015 RSC Adv. 5 106227
[31] Mihalache I, Radoi A, Mihaila M, Munteanu C, Marin A, Danila M, Kusko M and Kusko C 2015 Electrochim. Acta 153 306
[32] Shin S S, Kim J S, Suk J H, Lee K D, Kim D W, Park J H, Cho I S, Hong K S and Kim J Y 2013 ACS Nano 7 1027
[33] Yum J H, Jang S R, Humphry-Baker R, Gratzel M, Cid J J, Torres T and Nazeeruddin M K 2008 Langmuir 24 5636
[34] Huang F, Zhang Q F, Xu B K, Hou J, Wang Y, Masse R C, Peng S L, Liu J S and Cao G Z 2016 J. Mater. Chem. A 4 14773
[35] McDaniel H, Fuke N, Makarov N S, Pietryga J M and Klimov V I 2013 Nat. Commun. 4 2887
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[11] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[12] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[13] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
No Suggested Reading articles found!