Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056108    DOI: 10.1088/1674-1056/ac4234

Assessing the effect of hydrogen on the electronic properties of 4H-SiC

Yuanchao Huang(黄渊超)1,2, Rong Wang(王蓉)1,2,†, Yiqiang Zhang(张懿强)3, Deren Yang(杨德仁)1,2, and Xiaodong Pi(皮孝东)1,2,‡
1 State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2 Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China;
3 School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Abstract  As a common impurity in 4H silicon carbide (4H-SiC), hydrogen (H) may play a role in tuning the electronic properties of 4H-SiC. In this work, we systemically explore the effect of H on the electronic properties of both n-type and p-type 4H-SiC. The passivation of H on intrinsic defects such as carbon vacancies (VC) and silicon vacancies (VSi) in 4H-SiC is also evaluated. We find that interstitial H at the bonding center of the Si-C bond (Hibc) and interstitial H at the tetrahedral center of Si (HiSi-te) dominate the defect configurations of H in p-type and n-type 4H-SiC, respectively. In n-type 4H-SiC, the compensation of HiSi-te is found to pin the Fermi energy and hinder the increase of the electron concentration for highly N-doped 4H-SiC. The compensation of Hibc is negligible compared to that of VC on the p-type doping of Al-doped 4H-SiC. We further examine whether H can passivate VC and improve the carrier lifetime in 4H-SiC. It turns out that nonequilibrium passivation of VC by H is effective to eliminate the defect states of VC, which enhances the carrier lifetime of moderately doped 4H-SiC. Regarding the quantum-qubit applications of 4H-SiC, we find that H can readily passivate VSi during the creation of VSi centers. Thermal annealing is needed to decompose the resulting VSi-nH (n=1-4) complexes and promote the uniformity of the photoluminescence of VSi arrays in 4H-SiC. The current work may inspire the impurity engineering of H in 4H-SiC.
Keywords:  4H-silicon carbide      hydrogen      electronic properties      passivation  
Received:  24 September 2021      Revised:  09 December 2021      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200101),the National Natural Science Foundation of China (Grant Nos.91964107 and U20A20209),the"Pioneer "and" Leading Goose"Research and Development Program of Zhejiang Province,China (Grant No.2022C01021),and partial support from the National Natural Science Foundation of China for Innovative Research Groups (Grant No.61721005).The National Supercomputer Center in Tianjin is acknowledged for computational support.
Corresponding Authors:  Rong Wang,;Xiaodong Pi,     E-mail:;
About author:  2021-12-11

Cite this article: 

Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东) Assessing the effect of hydrogen on the electronic properties of 4H-SiC 2022 Chin. Phys. B 31 056108

[1] Kimoto T and Cooper J A 2014 Fundamentals of silicon carbide technology: growth, characterization, devices and applications (John Wiley & Sons) pp. 1-6
[2] Wang F F and Zhang Z 2016 CPSS Trans. Power Electron. Appl. 1 13
[3] Roccaforte F, Fiorenza P, Greco G, Nigro R L, Giannazzo F, Iucolano F and Saggio M 2018 Microelectron. Eng. 187-188 66
[4] Syväjärvi M, Ciechonski R R, Yazdi G R and Yakimova R 2005 Cryst. Growth 275 e1103
[5] Li Q, Polyakov A Y, Skowronski M, Fanton M A, Cavalero R C, Ray R G and Weiland B E 2005 Appl. Phys. Lett. 86 202102
[6] Peng Y, Xu X, Hu X, Jiang K, Song S, Gao Y and Xu H 2010 J. Appl. Phys. 107 093519
[7] Fanton M A, Li Q, Polyakov A Y, Skowronski M, Cavalero R and Ray R 2006 J. Cryst. Growth 287 339
[8] Larkin D J, Sridhara S G, Devaty R P and Choyke W J 1995 J. Electron. Mater. 24 289
[9] Larkin D J 1997 Phys. Status Solidi 202 305
[10] Nordell N, Nishino S, Yang J W, Jacob C and Pirouz P 1994 Appl. Phys. Lett. 64 1647
[11] Chowdhury I, Chandrasekhar M V S, Klein P B, Caldwell J D and Sudarshan T 2011 J. Cryst. Growth 316 60
[12] Owman F, Hallin C, MÅrtensson P and Janzen E 1996 J. Cryst. Growth 167 391
[13] Wang S, Dhar S, Wang S R, Ahyi A C, Franceschetti A, Williams J R and Pantelides S T 2007 Phys. Rev. Lett. 98 026101
[14] Senzaki J, Kojima K, Harada S, Kosugi R, Suzuki S, Suzuki T and Fukuda K 2002 IEEE Electron Dev. Lett. 23 13
[15] Devynck F, Alkauskas A, Broqvist P and Pasquarello A 2011 Phys. Rev. B 84 235320
[16] Roberson M A and Estreicher S K 1991 Phys. Rev. B 44 10578
[17] Kaukonen M, Fall C J and Lento J 2003 Appl. Phys. Lett. 83 923
[18] Aradi B, Deák P, Son N T, Janzén E, Choyke W J and Devaty R P 2001 Appl. Phys. Lett. 79 2746
[19] Choyke W J and Patrick L 1974 Phys. Rev. B 9 3214
[20] Gali A, Deák P, Son N T and Janzén E 2003 Appl. Phys. Lett. 83 1385
[21] Theys B, Gendron F, Porte C, Bringuier E and Dolin C 1997 J. Appl. Phys. 82 6346
[22] Gendron F, Porter L M, Porte C and Bringuier E 1995 Appl. Phys. Lett. 67 1253
[23] Aradi B, Gali A, Deák P, Son N T and Janzén E 2001 Physica B 308-310 722
[24] Deák P, Aradi B and Gali A 2001 J. Phys.: Condens. Mater 13 9019
[25] Koshka Y, Mazzola M S and Draper W A 2002 Appl. Phys. Lett. 80 4762
[26] Son N T, Trinh X T, Lovlie L S, Svensson B G, Kawahara K, Suda J and Janzén E 2012 Phys. Rev. Lett. 109 187603
[27] Capan I, Brodar T, Pastuović Z, Siegele R, Ohshima T, Sato S I and Demmouche K 2018 J. Appl. Phys. 123 161597
[28] Umeda T, Ishitsuka Y, Isoya J, Son N T, Janzén E, Morishita N and Gali A 2005 Phys. Rev. B 71 193202
[29] Cai X, Yang Y, Deng H X and Wei S H 2021 Phys. Rev. Mater. 5 064604
[30] Lee B, Han S and Kim Y S 2010 Phys. Rev. B 81 075432
[31] Coutinho J, Torres V J, Demmouche K and öberg S 2017 Phys. Rev. B 96 174105
[32] Okuda T, Kimoto T and Suda J 2013 Appl. Phys. Express 6 121301
[33] Murakami K, Tanai S, Okuda T, Suda J, Kimoto T and Umeda T 2016 Mater. Sci. Forum 858 318
[34] Aradi B, Gali A, Deák P, Lowther J E, Son N T, Janzén E and Choyke W J 2001 Phys. Rev. B 63 245202
[35] Gali A, Aradi B, Deák P, Choyke W J and Son N T 2000 Phys. Rev. Lett. 84 4926
[36] Szûcs B, Gali A, Hajnal Z, Deák P and Van de Walle C G 2003 Phys. Rev. B 68 085202
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Grimme S 2006 J. Comput. Chem. 27 1787
[40] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[41] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[42] Wei S H 2004 Comput. Mater. Sci. 30 337
[43] Wang R, Tong X, Xu J, Zhang S, Zheng P, Chen F X and Tan W 2019 Phys. Rev. Appl. 11 054021
[44] Scalise E, Marzegalli A, Montalenti F and Miglio L 2019 Phys. Rev. Appl. 12 021002
[45] Van de Walle C G and Neugebauer J 2006 Annu. Rev. Mater. Res. 36 179
[46] Tong X, Wang R, Zhang S, Xu J, Zheng P and Chen F X 2019 IEEE Trans. Electron. Dev. 66 5091
[47] Wang R, Xu J, Zhang S, Cheng Z, Zhang L, Zheng P and Tan W 2019 Appl. Phys. Lett. 115 143504
[48] Ohno T, Yamaguchi H, Kuroda S, Kojima K, Suzuki T and Arai K 2004 J. Cryst. Growth 271 1
[49] Myers-Ward R L, VanMil B L, Stahlbush R E, Katz S L, McCrate J M, Kitt S A and Gaskill D K 2009 Mater. Sci. Forum 615-617 105
[50] Luo X, Zhang K, Song X, Fang J, Yang F and Zhang B 2020 J. Semicond. 41 102801
[51] VanBrunt E, Cheng L, O'Loughlin M J, Richmond J, Pala V, Palmour J W and Scozzie C 2015 Mater. Sci. Forum 821-823 847
[52] Kadavelugu A and Bhattacharya S 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2014. IEEE, 1494
[53] Das M K, Zhang Q J, Callanan R, Capell C, Clayton J, Donofrio M and Sumakeris J J 2009 Mater. Sci. Forum 600 1183
[54] Ayedh H M, Nipoti R, Hallén A and Svensson B G 2015 Appl. Phys. Lett. 107 252102
[55] Hiyoshi T and Kimoto T 2009 Appl. Phys. Express 2 041101
[56] Zippelius B, Suda J and Kimoto T 2012 J. Appl. Phys. 111 033515
[57] Canino M, Fedeli P, Albonetti C and Nipoti R 2020 J. Microsc. 280 229
[58] Koehl W F, Buckley B B, Heremans F J, Calusine G and Awschalom D D 2011 Nature 479 84
[59] Falk A L, Buckley B B, Calusine G, Koehl W F, Dobrovitski V V, Politi A and Awschalom D D 2013 Nat. Commun. 4 1
[60] Gordon L, Janotti A and Van de Walle C G 2015 Phys. Rev. B 92 045208
[61] Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stöhr R and Wrachtrup J 2019 Nat. Commun. 10 1
[62] Davidsson J, Ivády V, Armiento R, Ohshima T, Son N T, Gali A and Abrikosov I A 2019 Appl. Phys. Lett. 114 112107
[63] Wimbauer T, Meyer B K, Hofstaetter A, Scharmann A and Overhof H 1997 Phys. Rev. B 56 7384
[64] Pavunny S P, Yeats A L, Banks H B, Bielejec E, Myers-Ward R L, DeJarld M T and Carter S G 2021 Sci. Rep. 11 1
[65] Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K and Gao W 2017 Phys. Rev. Appl. 7 064021
[66] Bathen M E, Galeckas A, Coutinho J and Vines L 2020 J. Appl. Phys. 127 085701
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[7] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[8] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[9] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[14] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[15] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
No Suggested Reading articles found!