Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047101    DOI: 10.1088/1674-1056/abccb7

Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations

Wei Hu(胡伟)1, 2, 3, Ying Tian(田颖)1,2, Hong-Tao Xue(薛红涛)1,2, Wen-Sheng Li(李文生)1,2, and Fu-Ling Tang(汤富领)1,2,†
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; 3 Department of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
Abstract  The MAPbI3 (110) surface with low indices of crystal face is a stable and highly compatible photosensitive surface. Since the electronic states on the surface can be detrimental to the photovoltaic efficiency of the device, they should be passivated. Phenylethylamine (PEA+), as a molecular ligand, has been widely used in continuous degradation and interfacial charge recombination experiments, and has satisfactory performance in improving surface defects. Therefore, we construct an adsorption model of MAPbI3 with small molecules, calculating the lattice structure and electronic properties of PEA+-adsorbed MAPbI3 (110) surface. It is found that PEA+ as a passivator can effectively weaken the electronic states and regulate the band gap of the MAPbI3 (110) surface. Before and after adding the passivator, the peak value of electronic state densities at MAPbI3 (110) surface is reduced by about 50%, and the band gap is apparently reduced. Moreover, by comparing the Bader atomic charge and spatial charge distributions before and after PEA+'s adsorption on the surface of MAPbI3, we observe a substantial change of PEA+ charges, which suggests the surface states have been passivated by PEA+.
Keywords:  first-principles calculations      surface states      passivation  
Received:  06 October 2020      Revised:  10 November 2020      Accepted manuscript online:  23 November 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.A- (Ab initio calculations)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764027 and 51674130), the Scientific Research Projects of Higher Education in Gansu Province, China (Grant No. 2018A-126), and the Research Team Support Program of Lanzhou Institute of Technology (Grant Nos. 2018KW-11 and 2020KJ-01).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领) Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations 2021 Chin. Phys. B 30 047101

1 Luo L, Zhang Y, Chai N, Deng X, Zhong J, Huang F, Peng Y, Cheng Y B and Ku Z 2018 J. Mater. Chem. A 6 21143
2 Zhang L and Sit P H L 2016 RSC Adv. 6 76938
3 Wang S, Zhu Y, Wang C and Ma R 2019 J. Mater. Chem. A 7 11867
4 Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
5 Shi J, Xu X, Li D and Meng Q 2015 Small 11 2472
6 Graetzel M, Janssen R A, Mitzi D B and Sargent E H 2012 Nature 488 304
7 Ding S, Li S, Sun Q, Wu Y C, Liu Y, Li Z, Cui Y, Wang H, Hao Y and Wu Y 2019 J. Mater. Chem. C 7 5686
8 Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
9 Gao J, Shi S and Li H 2016 Chin. Phys. B 1 18210
10 Shi J, Xu X, Li D and Meng Q 2015 Small 11 2472
11 Gao F, Zhao Y, Zhang X and You J 2019 Adv. Energy Mater. 10 1902650
12 Hu Y, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Mullerbuschschbaum P and Docampo P 2016 ACS Nano 10 5999
13 Bai Y, Xiao S, Hu C, Zhang T, Meng X, Lin H, Yang Y and Yang S 2017 Adv. Energy Mater. 7 1701038
14 Yantara N, Yanan F, Shi C, Dewi H A, Boix P P, Mhaisalkar S G and Mathews N 2015 Chem. Mater. 27 2309
15 Koushik D, Verhees W, Kuang Y, Veenstra S, Zhang D, Verheijen M A, Creatore M and Schropp R E I 2017 Energy Environ. Sci. 10 91
16 Zhang F and Zhu K 2019 Adv. Energy Mater. 10 1902579
17 Kim M, Kim G, Lee T K, Choi I W, Choi H W, Jo Y, Yoo Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y and Kim D S 2019 Joule 3 2179
18 Abdijalebi M, Andajigarmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter, J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497
19 Lee D S, Yun J S, Kim J, Soufiani A M, Chen S, Cho Y, Deng J S, Lim S, Huang S and Hobaillie A 2018 ACS Energy Lett. 3 647
20 Li N, Zhu Z, Dong Q, Li J, Yang Z, Chueh C, Jen A K Y and Wang L 2017 Adv. Mater. Interfaces 4 1700598
21 Kim H, Lee Y H, Lyu T, Yoo J H and Oh J H 2018 J. Mater. Chem. A 6 18173
22 Zhang F, Huang Q, Song J, Zhang Y, Ding C, Liu F, Liu D, Li X, Yasuda H, Yoshida K, Qu J, Hayase S, Toyoda T, Minemoto T and Shen Q 2020 Solar RRL 4 1900243
23 Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
24 Xu C, Zhang Z, Hu Y, Sheng Y, Jiang P, Han H and Zhang J 2018 J. Energy Chem. 27 764
25 Lee K, Kim J, Yu H, Lee J W, Yoon C, Kim S K and Jang J 2018 J. Mater. Chem. A 6 24560
26 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
27 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
28 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
29 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
30 Wen Z, Zhao Y, Hou H, Wang N, Li F U and Han P 2014 T. Nonferr. Metal. Soc. 24 1500
31 Li D F, Zu X T, Xiao H Y and Liu K Z 2009 J. Alloy. Compd. 467 557
32 Wang C, Gao H, Dai Y, Ruan X, Shen J, Wang J and Sun B 2010 J. Alloy. Compd. 490 L9
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!