Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068504    DOI: 10.1088/1674-1056/ac364b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration

Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi
Faculty of Science, Malek Ashtar University of Technology, Shahin-Shahr, Iran
Abstract  We present a comprehensive numerical framework for the electrical and optical modeling and simulation of hybrid quantum dot light-emitting diodes (QD-LEDs). We propose a model known as hopping mobility to calculate the carrier mobility in the emissive organic layer doped with quantum dots (QDs). To evaluate the ability of this model to describe the electrical characteristics of QD-LEDs, the measured data of a fabricated QD-LED with different concentrations of QDs in the emissive layer were taken, and the corresponding calculations were performed based on the proposed model. The simulation results indicate that the hopping mobility model can describe the concentration dependence of the electrical behavior of the device. Then, based on the continuity equation for singlet and triplet excitons, the exciton density profiles of the devices with different QD concentrations were extracted. Subsequently, the corresponding luminance characteristics of the devices were calculated, where the results are in good agreement with the experimental data.
Keywords:  hybrid quantum dot light-emitting diode (QD-LED)      concentration-dependent hopping mobility      effective transport model      Gaussian band structure  
Received:  12 August 2021      Revised:  28 October 2021      Accepted manuscript online:  04 November 2021
PACS:  85.60.Jb (Light-emitting devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Corresponding Authors:  Mahdi Davoudi-Darareh     E-mail:  m.davoudi@mut-es.ac.ir

Cite this article: 

Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration 2022 Chin. Phys. B 31 068504

[1] Gao H Y, Yao Q X, Liu P, Zheng Z Q, Liu J C, Zheng H D, Zeng C, Yu Y J, Sun T and Zeng Z X 2016 Chin. Phys. B 25 94203
[2] Cao J, Xie J W, Wei X, Zhou J, Chen C P, Wang Z X and Jhun C 2016 Chin. Phys. B 25 128502
[3] Pan J, Chen J, Huang Q, Wang L and Lei W 2017 RSC Adv. 7 43366
[4] Rahmati M, Dayneko S, Pahlevani M and Shi Y 2019 Adv. Funct. Mater. 29 1906742
[5] Perveen A, Zhang X, Tang J L, Han D B, Chang S, Deng L G, Ji W Y and Zhong H Z 2018 Chin. Phys. B 27 86101
[6] Yu Q Q, Zhang X, Bi J X, Liu G T, Zhang Q W, Wu X M, Hua Y L and Yin S G 2016 Chin. Phys. Lett. 33 88503
[7] Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2532
[8] Dong D, Wu W, Lian L, Feng D, Su Y, Li W and He G 2017 J. Mater. Chem. C 5 5018
[9] Kang B H, Lee S W, Lim S W, You T Y, Yeom S H, Kim K J, Kwon D H and Kang S W 2013 IEEE Electron Device Lett. 34 656
[10] Sun Y, Jiang Y, Sun X W, Zhang S and Chen S 2019 Chem. Rec. 19 1729
[11] Jia H, Wang F and Tan Z 2020 Nanoscale 12 13186
[12] Sheykholeslami-Nasab P, Davoudi-Darareh M, Yousefi M H and Rostamnejadi A 2020 Opt. Quantum Electron. 52 1
[13] Sheykholeslami-Nasab P, Davoudi-Darareh M and Yousefi M H 2021 Eur. Phys. J. Appl. Phys. 96 10201
[14] Arkhipov V I, Emelianova E V and Adriaenssens G J 2001 Phys. Rev. B 64 125125
[15] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2004 J. Non. Cryst. Solids 338-340 603
[16] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 Appl. Phys. Lett. 82 3245
[17] Arkhipov V I, Heremans P, Emelianova E V and Baessler H 2005 Phys. Rev. B 71 45214
[18] Lee C C, Chang M Y, Huang P, Chen Y C, Chang Y and Liu S W 2007 J. Appl. Phys. 101 114501
[19] Siemund H and Göbel H 2016 IEEE Trans. Electron Devices 63 3700
[20] Pope M and Swenberg C E 1999 Electronic processes in organic crystals and polymers vol. 39 (Oxford University Press on Demand)
[21] de Vries R J, van Mensfoort S L M, Janssen R A J, Coehoorn R, Vries R, Mensfoort S, Janssen R A J and Coehoorn R 2010 Phys. Rev. B 81 125203
[22] Duke C B 1969 Tunneling Phenomena in Solids vol. 10 (Academic Press)
[23] Yang K, East J R and Haddad G I 1993 Solid. State. Electron. 36 321
[24] Davids P S, Campbell I H and Smith D L 1997 J. Appl. Phys. 82 6319
[25] Scott J C and Malliaras G G 1999 Chem. Phys. Lett. 299 115
[26] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken, New Jersey: John wiley & sons)
[27] Haneef H F, Zeidell A M and Jurchescu O D 2020 J. Mater. Chem. C 8 759
[28] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 MRS Online Proc. Libr. Arch. 771
[29] Grünewald M, Thomas P and Würtz D 1979 Physica Status Solidi 94 K1
[30] Verlaak S, Cheyns D, Debucquoy M, Arkhipov V, Heremans P, Verlaak S, Cheyns D and Debucquoy M 2004 Appl. Phys. Lett. 85 2405
[31] Medintz I and Hildebrandt N 2013 FRET — Föster Resonance Energy Transfer (Weinheim: John Wiley & Sons)
[32] Park J, Kawakami Y and Park S H 2007 J. Light. Technol. 25 2828
[33] Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M, Leblanc R and Radotić K 2011 Analyst 136 2391
[34] Li F, Guo T and Kim T 2010 Appl. Phys. Lett. 97 62104
[35] Tang A, Teng F, Hou Y, Xiong S, Feng B, Qian L and Wang Y 2008 J. Nanosci. Nanotechnol. 8 1330
[36] Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H and Kim H R 2010 Opt. Express 18 18303
[37] Rodríguez-Mas F, Ferrer J C, Alonso J L and Fernández de Ávila S 2019 Nanomaterials 9 1212
[38] Park J Y and Advincula R C 2014 Phys. Chem. Chem. Phys. 16 8589
[39] Tang A W, Teng F, Xiong S, Gao Y H, Liang C J and Hou Y B 2007 J. Photochem. Photobiol. A Chem. 192 1
[40] Benchaabane A, Hamed Z Ben, Telfah A, Sanhoury M A, Kouki F, Zellama K and Bouchriha H 2017 Mater. Sci. Semicond. Process. 64 115
[41] Ye T, Chen J and Ma D 2010 Phys. Chem. Chem. Phys. 12 15410
[42] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[43] Walker A B, Kambili A and Martin S J 2002 J. Phys. Condens. Matter 14 9825
[44] Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Devices 16 64
[45] Kumar M, Singh A K and Srivastava A 2013 J. Egypt. Math. Soc. 21 334
[46] Yokoyama T, Yoshimura D, Ito E, Ishii H, Ouchi Y and Seki K 2003 Jpn. J. Appl. Phys. 42 3666
[47] Rutledge S A and Helmy A S 2013 J. Appl. Phys. 114 133708
[48] Jewłoszewicz B, Bogdanowicz K A, PrzybyłW, Iwan A and Plebankiewicz I 2020 Polymers (Basel). 12 565
[49] Sun Q J, Hou J H, Yang C H, Li Y F and Yang Y 2006 Appl. Phys. Lett. 89 153501
[50] Park H, Shin D S, Yu H S and Chae H B 2007 Appl. Phys. Lett. 90 202103
[51] Nguyen H T, Jeong H, Park J Y, Ahn Y H and Lee S 2014 ACS Appl. Mater. Interfaces 6 7286
[52] D'Angelo P, Barra M, Cassinese A, Maglione M G, Vacca P, Minarini C and Rubino A 2007 Solid. State. Electron. 51 123
[53] Parker I D 1994 J. Appl. Phys. 75 1656
[54] Shaheen S E, Jabbour G E, Morrell M M, Kawabe Y, Kippelen B, Peyghambarian N, Nabor M F, Schlaf R, Mash E A and Armstrong N R 1998 J. Appl. Phys. 84 2324
[55] Roman L S and Inganäs O 2001 Synth. Met. 125 419
[56] Mohan S R and Joshi M P 2006 Solid State Commun. 139 181
[57] Wang L W and Zunger A 1996 Phys. Rev. B 53 9579
[58] Jasieniak J, Califano M and Watkins S E 2011 ACS Nano 5 5888
[59] Bresolin B M, Tang W Z and Sillanpää M 2018 Environ. Process. 5 879
[60] Bruno A, Del Mauro A D G, Nenna G, Maglione M G, Haque S A and Minarini C 2013 J. Photonics Energy 3 33599
[61] Zhang B, Chen Y, Zhuang X, Liu G, Yu B, Kang E T, Zhu J and Li Y 2010 J. Polym. Sci. Part A Polym. Chem. 48 2642
[62] Vembris A, Zarins E and Kokars V 2017 Opt. Laser Technol. 95 74
[63] Lundberg P, Tsuchiya Y, Lindh E M, Tang S, Adachi C and Edman L 2019 Nat. Commun. 10 5307
[64] Ribeiro A C C, Souza G A, Pereira D H, Cordeiro D S, Miranda R S, Custódio R and Martins T D 2019 ACS Omega 4 606
[65] Pina J, De Melo J S, Burrows H D, Monkman A P and Navaratnam S 2004 Chem. Phys. Lett. 400 441
[66] Chen H S, Ando M and Murase N 2011 Mater. Lett. 65 3146
[67] Zhu H, Hu M Z, Shao L, Yu K, Dabestani R, Zaman M B and Liao S 2014 J. Nanomater. 2014 324972
[68] Park H W and Kim D H 2012 J. Nanomater. 2012 892506
[69] Jiang Y, Cho S Y and Shim M 2018 J. Mater. Chem. C 6 2618
[1] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[4] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[7] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[8] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[9] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[10] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[11] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[12] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[13] Stackable luminescent device integrating blue light emitting diode with red organic light emitting diode
Kang Su(苏康), Jing Li(李璟), Chang Ge(葛畅), Xing-Dong Lu(陆兴东), Zhi-Cong Li(李志聪), Guo-Hong Wang(王国宏), Jin-Min Li(李晋闽). Chin. Phys. B, 2020, 29(4): 048504.
[14] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[15] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
No Suggested Reading articles found!