INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration |
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh†, and Mohammad Hassan Yousefi |
Faculty of Science, Malek Ashtar University of Technology, Shahin-Shahr, Iran |
|
|
Abstract We present a comprehensive numerical framework for the electrical and optical modeling and simulation of hybrid quantum dot light-emitting diodes (QD-LEDs). We propose a model known as hopping mobility to calculate the carrier mobility in the emissive organic layer doped with quantum dots (QDs). To evaluate the ability of this model to describe the electrical characteristics of QD-LEDs, the measured data of a fabricated QD-LED with different concentrations of QDs in the emissive layer were taken, and the corresponding calculations were performed based on the proposed model. The simulation results indicate that the hopping mobility model can describe the concentration dependence of the electrical behavior of the device. Then, based on the continuity equation for singlet and triplet excitons, the exciton density profiles of the devices with different QD concentrations were extracted. Subsequently, the corresponding luminance characteristics of the devices were calculated, where the results are in good agreement with the experimental data.
|
Received: 12 August 2021
Revised: 28 October 2021
Accepted manuscript online: 04 November 2021
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
Corresponding Authors:
Mahdi Davoudi-Darareh
E-mail: m.davoudi@mut-es.ac.ir
|
Cite this article:
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration 2022 Chin. Phys. B 31 068504
|
[1] Gao H Y, Yao Q X, Liu P, Zheng Z Q, Liu J C, Zheng H D, Zeng C, Yu Y J, Sun T and Zeng Z X 2016 Chin. Phys. B 25 94203 [2] Cao J, Xie J W, Wei X, Zhou J, Chen C P, Wang Z X and Jhun C 2016 Chin. Phys. B 25 128502 [3] Pan J, Chen J, Huang Q, Wang L and Lei W 2017 RSC Adv. 7 43366 [4] Rahmati M, Dayneko S, Pahlevani M and Shi Y 2019 Adv. Funct. Mater. 29 1906742 [5] Perveen A, Zhang X, Tang J L, Han D B, Chang S, Deng L G, Ji W Y and Zhong H Z 2018 Chin. Phys. B 27 86101 [6] Yu Q Q, Zhang X, Bi J X, Liu G T, Zhang Q W, Wu X M, Hua Y L and Yin S G 2016 Chin. Phys. Lett. 33 88503 [7] Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2532 [8] Dong D, Wu W, Lian L, Feng D, Su Y, Li W and He G 2017 J. Mater. Chem. C 5 5018 [9] Kang B H, Lee S W, Lim S W, You T Y, Yeom S H, Kim K J, Kwon D H and Kang S W 2013 IEEE Electron Device Lett. 34 656 [10] Sun Y, Jiang Y, Sun X W, Zhang S and Chen S 2019 Chem. Rec. 19 1729 [11] Jia H, Wang F and Tan Z 2020 Nanoscale 12 13186 [12] Sheykholeslami-Nasab P, Davoudi-Darareh M, Yousefi M H and Rostamnejadi A 2020 Opt. Quantum Electron. 52 1 [13] Sheykholeslami-Nasab P, Davoudi-Darareh M and Yousefi M H 2021 Eur. Phys. J. Appl. Phys. 96 10201 [14] Arkhipov V I, Emelianova E V and Adriaenssens G J 2001 Phys. Rev. B 64 125125 [15] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2004 J. Non. Cryst. Solids 338-340 603 [16] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 Appl. Phys. Lett. 82 3245 [17] Arkhipov V I, Heremans P, Emelianova E V and Baessler H 2005 Phys. Rev. B 71 45214 [18] Lee C C, Chang M Y, Huang P, Chen Y C, Chang Y and Liu S W 2007 J. Appl. Phys. 101 114501 [19] Siemund H and Göbel H 2016 IEEE Trans. Electron Devices 63 3700 [20] Pope M and Swenberg C E 1999 Electronic processes in organic crystals and polymers vol. 39 (Oxford University Press on Demand) [21] de Vries R J, van Mensfoort S L M, Janssen R A J, Coehoorn R, Vries R, Mensfoort S, Janssen R A J and Coehoorn R 2010 Phys. Rev. B 81 125203 [22] Duke C B 1969 Tunneling Phenomena in Solids vol. 10 (Academic Press) [23] Yang K, East J R and Haddad G I 1993 Solid. State. Electron. 36 321 [24] Davids P S, Campbell I H and Smith D L 1997 J. Appl. Phys. 82 6319 [25] Scott J C and Malliaras G G 1999 Chem. Phys. Lett. 299 115 [26] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken, New Jersey: John wiley & sons) [27] Haneef H F, Zeidell A M and Jurchescu O D 2020 J. Mater. Chem. C 8 759 [28] Arkhipov V I, Heremans P, Emelianova E V, Adriaenssens G J and Bässler H 2003 MRS Online Proc. Libr. Arch. 771 [29] Grünewald M, Thomas P and Würtz D 1979 Physica Status Solidi 94 K1 [30] Verlaak S, Cheyns D, Debucquoy M, Arkhipov V, Heremans P, Verlaak S, Cheyns D and Debucquoy M 2004 Appl. Phys. Lett. 85 2405 [31] Medintz I and Hildebrandt N 2013 FRET — Föster Resonance Energy Transfer (Weinheim: John Wiley & Sons) [32] Park J, Kawakami Y and Park S H 2007 J. Light. Technol. 25 2828 [33] Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M, Leblanc R and Radotić K 2011 Analyst 136 2391 [34] Li F, Guo T and Kim T 2010 Appl. Phys. Lett. 97 62104 [35] Tang A, Teng F, Hou Y, Xiong S, Feng B, Qian L and Wang Y 2008 J. Nanosci. Nanotechnol. 8 1330 [36] Kang B H, Seo J S, Jeong S, Lee J, Han C S, Kim D E, Kim K J, Yeom S H, Kwon D H and Kim H R 2010 Opt. Express 18 18303 [37] Rodríguez-Mas F, Ferrer J C, Alonso J L and Fernández de Ávila S 2019 Nanomaterials 9 1212 [38] Park J Y and Advincula R C 2014 Phys. Chem. Chem. Phys. 16 8589 [39] Tang A W, Teng F, Xiong S, Gao Y H, Liang C J and Hou Y B 2007 J. Photochem. Photobiol. A Chem. 192 1 [40] Benchaabane A, Hamed Z Ben, Telfah A, Sanhoury M A, Kouki F, Zellama K and Bouchriha H 2017 Mater. Sci. Semicond. Process. 64 115 [41] Ye T, Chen J and Ma D 2010 Phys. Chem. Chem. Phys. 12 15410 [42] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007 [43] Walker A B, Kambili A and Martin S J 2002 J. Phys. Condens. Matter 14 9825 [44] Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Devices 16 64 [45] Kumar M, Singh A K and Srivastava A 2013 J. Egypt. Math. Soc. 21 334 [46] Yokoyama T, Yoshimura D, Ito E, Ishii H, Ouchi Y and Seki K 2003 Jpn. J. Appl. Phys. 42 3666 [47] Rutledge S A and Helmy A S 2013 J. Appl. Phys. 114 133708 [48] Jewłoszewicz B, Bogdanowicz K A, PrzybyłW, Iwan A and Plebankiewicz I 2020 Polymers (Basel). 12 565 [49] Sun Q J, Hou J H, Yang C H, Li Y F and Yang Y 2006 Appl. Phys. Lett. 89 153501 [50] Park H, Shin D S, Yu H S and Chae H B 2007 Appl. Phys. Lett. 90 202103 [51] Nguyen H T, Jeong H, Park J Y, Ahn Y H and Lee S 2014 ACS Appl. Mater. Interfaces 6 7286 [52] D'Angelo P, Barra M, Cassinese A, Maglione M G, Vacca P, Minarini C and Rubino A 2007 Solid. State. Electron. 51 123 [53] Parker I D 1994 J. Appl. Phys. 75 1656 [54] Shaheen S E, Jabbour G E, Morrell M M, Kawabe Y, Kippelen B, Peyghambarian N, Nabor M F, Schlaf R, Mash E A and Armstrong N R 1998 J. Appl. Phys. 84 2324 [55] Roman L S and Inganäs O 2001 Synth. Met. 125 419 [56] Mohan S R and Joshi M P 2006 Solid State Commun. 139 181 [57] Wang L W and Zunger A 1996 Phys. Rev. B 53 9579 [58] Jasieniak J, Califano M and Watkins S E 2011 ACS Nano 5 5888 [59] Bresolin B M, Tang W Z and Sillanpää M 2018 Environ. Process. 5 879 [60] Bruno A, Del Mauro A D G, Nenna G, Maglione M G, Haque S A and Minarini C 2013 J. Photonics Energy 3 33599 [61] Zhang B, Chen Y, Zhuang X, Liu G, Yu B, Kang E T, Zhu J and Li Y 2010 J. Polym. Sci. Part A Polym. Chem. 48 2642 [62] Vembris A, Zarins E and Kokars V 2017 Opt. Laser Technol. 95 74 [63] Lundberg P, Tsuchiya Y, Lindh E M, Tang S, Adachi C and Edman L 2019 Nat. Commun. 10 5307 [64] Ribeiro A C C, Souza G A, Pereira D H, Cordeiro D S, Miranda R S, Custódio R and Martins T D 2019 ACS Omega 4 606 [65] Pina J, De Melo J S, Burrows H D, Monkman A P and Navaratnam S 2004 Chem. Phys. Lett. 400 441 [66] Chen H S, Ando M and Murase N 2011 Mater. Lett. 65 3146 [67] Zhu H, Hu M Z, Shao L, Yu K, Dabestani R, Zaman M B and Liao S 2014 J. Nanomater. 2014 324972 [68] Park H W and Kim D H 2012 J. Nanomater. 2012 892506 [69] Jiang Y, Cho S Y and Shim M 2018 J. Mater. Chem. C 6 2618 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|