Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068502    DOI: 10.1088/1674-1056/ac4f55
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors

Yanzhe Wang(王彦喆)1,2, Wuchang Ding(丁武昌)2, Yongbo Su(苏永波)2, Feng Yang(杨枫)2, Jianjun Ding(丁建君)1,2, Fugui Zhou(周福贵)1,2, and Zhi Jin(金智)2,†
1 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
2 High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  We present a convenient and practical electromagnetic (EM) assisted small-signal model extraction method for InP double-heterojunction bipolar transistors (DHBTs). Parasitic parameters of pad and electrode fingers are extracted by means of 3D EM simulation. The simulations with a new excitation scheme are closer to the actual on-wafer measurement conditions. Appropriate simulation settings are calibrated by comparing measurement and simulation of OPEN and SHORT structures. A simpler $\pi $-type topology is proposed for the intrinsic model, in which the base-collector resistance $R_\mu$, output resistance $R_{\rm ce}$ are deleted, and a capacitance $C_{\rm ce}$ is introduced to characterize the capacitive parasitic caused by the collector finger and emitter ground bar. The intrinsic parameters are all extracted by exact equations that are derived from rigorous mathematics. The method is characterized by its ease of implementation and the explicit physical meaning of extraction procedure. Experimental validations are performed at four biases for three InGaAs/InP HBT devices with $0.8\times 7 $μm, 0$.8\times 10 $μm and $0.8\times 15 $μm emitter, and quite good fitting results are obtained in the range of 0.1-50 GHz.
Keywords:  electromagnetic simulation      InP double-heterojunction bipolar transistor      parameter extraction      small-signal modeling  
Received:  11 November 2021      Revised:  31 December 2021      Accepted manuscript online:  27 January 2022
PACS:  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.-z (Semiconductor devices)  
Corresponding Authors:  Zhi Jin     E-mail:  jinzhi@ime.ac.cn

Cite this article: 

Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智) An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors 2022 Chin. Phys. B 31 068502

[1] Petruzzelli V 2003 Int. J. Numer. Model. Electron. Networks Dev. Fields 16 105
[2] Cai J, Liu J, King J and Sun L 2020 Int. J. RF Microw. Computer-Aided Engin. 30 e22235
[3] Mei X, Yoshida W, Lange M, et al. 2015 IEEE Electron Device Lett. 36 327
[4] Urteaga M, Hacker J, Griffith Z, Young A and Rodwell M 2016 62$nd Annual IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, CA, USA, pp. 29.2.1-29.2.4
[5] Kraemer T 2013 IEEE Trans. Electron Devices 60 2209
[6] Crupi G and Schreurs M P 2013 Microwave De-Embedding: From Theory to Applications (New York: Academic Press)
[7] Koolen M, Geelen J and Versleijen M 1991 Proceedings of the 1991 Bipolar Circuits and Technology Meeting, September 9-10, 1991, Minneapolis, MN, USA, pp. 188-191
[8] Kolding T E 2000 IEEE Trans. Electron Devices 47 734
[9] Vandamme E P, Schreurs M P and Dinther G V 2001 IEEE Trans. Electron Devices 48 737
[10] Wei X, Niu G, Sweeney S, Liang Q, Wang X and Taylor S 2007 IEEE Trans. Electron Devices 54 2706
[11] Jung G, Choi W and Kwon Y 2009 IEEE MTT-S International Microwave Symposium Digest, June 7-12, 2009, Boston, MA, USA, pp. 873-876
[12] Cidronali A, Collodi G, Santarelli A, Vannini G and Manes G 2002 IEEE Trans. Microwave Theor. Tech. 50 425
[13] Resca D, Santarelli A, Raffo A, Cignani R and Filicori F 2007 European Microwave Integrated Circuit Conference, October 8-10, 2007, Munich, Germany, pp. 60-63
[14] Zhu G, Chang C, Xu Y, Zhang Z, Al-Saman A A and Lin F 2020 Microw. Opt. Technol. Lett. 63 2145
[15] Pawan S V, Johansen T K, Erkelenz K et al. 2020 German Microwave Conference (GeMiC), March 9-11, Cottbus, Germany, pp. 240-243
[16] Li O, Yong Z, Wang L and Xu R 2017 J. Infrared Millimeter Terahertz Waves 38 1
[17] Johansen TK, Doerner R, Weimann N, Hossain M, Krozer V and Heinrich W 2018 Int. J. Microwave Wireless Technol. 10 700
[18] Chen Y, Yong Z, Li X and Xu R 2020 Int. J. Numer. Model. 33 e2551
[19] Nalli A, Raffo A, Crupi G, D'Angelo S and Vannini G 2015 IEEE Trans. Microwave Theor. Tech. 63 2498
[20] Johansen T K, Jiang C, Hadziabdic D and Krozer V 2007 European Microwave Integrated Circuit Conference, October 08-12, 2007, Munich, Germany, pp. 447-450
[21] Louay, Degachi, Fadhel M and Ghannouchi 2006 IEEE Trans. Microwave Theor. Tech. 54 682
[22] Degachi L and Ghannouchi F M 2008 IEEE Trans. Electron Devices 55 968
[23] Degachi L and Ghannouchi F M 2002 IEEE Trans. Microwave Theor. Tech. 54 682
[24] Rudolph M 2006 Introduction to modeling HBTs (Boston: Artech House Publishers)
[25] Fregonese S, Deng M, De Matos M, et al. 2019 IEEE Trans. Terahertz Sci. Technol. 9 89
[26] Crupi G, Raffo A, Marinkovic Z, Avolio G and Schreurs M P 2014 IEEE Trans. Microwave Theor. Tech. 62 513
[27] Crupi G, Raffo A, Vannini and Caddemi 2012 IEEE Microwave Wireless Compon. Lett. 22 406
[28] Lu S S, Chen T W, Chen H C and Meng C 2001 IEEE Trans. Microwave Theor. Tech. 49 333
[29] Gao H, Sun X, Hua Y, Zhang X, Wang R and Li G P 2010 IEEE Electron Device Lett. 31 1113
[30] Lee C and Lin W 2014 IEEE Trans. Electron Devices 62 94
[1] Small-signal modeling of GaN HEMT switch with a new intrinsic elements extraction method
Miao Geng(耿苗), Pei-Xian Li(李培咸), Wei-Jun Luo(罗卫军), Peng-Peng Sun(孙朋朋), Rong Zhang(张蓉), Xiao-Hua Ma(马晓华). Chin. Phys. B, 2016, 25(11): 117301.
[2] Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study
Md Ghulam Saber, Kh Arif Shahriar, Ashik Ahmed, Rakibul Hasan Sagor. Chin. Phys. B, 2016, 25(10): 105101.
[3] A novel physical parameter extraction approach for Schottky diodes
Wang Hao (王昊), Chen Xing (陈星), Xu Guang-Hui (许光辉), Huang Ka-Ma (黄卡玛). Chin. Phys. B, 2015, 24(7): 077305.
[4] Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures
Liu Hong-Xia(刘红侠), Wu Xiao-Feng(吴笑峰), Hu Shi-Gang(胡仕刚), and Shi Li-Chun(石立春). Chin. Phys. B, 2010, 19(5): 057303.
No Suggested Reading articles found!