Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128801    DOI: 10.1088/1674-1056/abb7fe
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface

Quan-Zhen Sun(孙全震)1,†, Hong-Jie Jia(贾宏杰)1,†, Shu-Ying Cheng(程树英)1,2,‡, Hui Deng(邓辉)1,\ccclink, Qiong Yan(严琼)1,3, Bi-Wen Duan(段碧雯)4, Cai-Xia Zhang(张彩霞)1,2, Qiao Zheng(郑巧)1,2, Zhi-Yuan Yang(杨志远)1, Yan-Hong Luo(罗艳红)4, Qing-Bo Men(孟庆波)4, and Shu-Juan Huang(黄淑娟)5
1 College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China; 2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China; 3 Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou 350108, China; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
Abstract  Flexible Cu2ZnSn(S,Se)4 (CZTSSe) solar cells show great potential applications due to low-cost, nontoxicity, and stability. The device performances under an especial open circuit voltage (V OC) are limited by the defect recombination of CZTSSe/CdS heterojunction interface. We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils. The efficiency of the device is improved from 5.7% to 6.86% by highquality junction interface. Furthermore, aiming at the S loss of CdS film, the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality. The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05% efficiency with a V OC of 0.44 V at an optimized S source concentration of 0.68 mol/L. Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the V OC deficit. For the CZTSSe device bending characteristics, the device efficiency is almost constant after 1000 bends, manifesting that the CZTSSe device has an excellent mechanical flexibility. The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
Keywords:  flexible solar cells      CdS deposition      heterojunction interface      defect passivation  
Received:  11 May 2020      Revised:  28 August 2020      Accepted manuscript online:  14 September 2020
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  81.10.Dn (Growth from solutions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074037, 61574038, 51961165108, and 51972332), the Natural Science Foundation of Fujian Province, China (Grant No. 2017J01503), the Education and Scientific Research Project of Fujian Province, China (Grant No. JAT190010), the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment, China (Grant No. SKLPEE-202011), and Fuzhou University, China.
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: sycheng@fzu.edu.cn §Corresponding author. E-mail: denghui@fzu.edu.cn   

Cite this article: 

Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟) A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface 2020 Chin. Phys. B 29 128801

[1] Chen Y S, Wang Y J, Li R, Gu J H, Lu J X and Yang S E Chin. Phys. B 21 058801 DOI: 10.1088/1674-1056/21/5/0588012012
[2] Jiang Z W, Gao S S, Wang S Y, Wang D X, Gao P, Sun Q, Zhou Z Q, Liu W, Sun Y and Zhang Y Chin. Phys. B 28 048801 DOI: 10.1088/1674-1056/28/4/0488012019
[3] Li Y M, Qiu L X, Ding Z H, Li Y F, Yao B, Xiao Z Y and Zhu P W Chin. Phys. Lett. 33 076101 DOI: 10.1088/0256-307X/33/7/0761012016
[4] Sun D, Ge Y, Xu S Z, Zhang L, Li B Z, Wang G C, Wei C C, Zhao Y and Zhang X D Chin. Phys. Lett. 32 128401 DOI: 10.1088/0256-307X/32/12/1284012015
[5] Yu J, Zheng Z, Dong L, Cheng S, Lai Y, Zheng Q, Zhou H, Jia H and Zhang H Chin. Phys. B 26 046802 DOI: 10.1088/1674-1056/26/4/0468022017
[6] Li J, Wang D, Li X, Zeng Y and Zhang Y Adv. Sci. 5 1700744 DOI: 10.1002/advs.v5.42018
[7] Yang K J, Kim S, Kim S Y, Ahn K, Son D H, Kim S H, Lee S J, Kim Y I, Park S N, Sung S J, Kim D H, Enkhbat T, Kim J, Jeon C W and Kang J K Nat. Commun. 10 2959 DOI: 10.1038/s41467-019-10890-x2019
[8] Wang W, Shen H L, Jin J L, Li J Z and Ma Y Chin. Phys. B 24 056805 DOI: 10.1088/1674-1056/24/5/0568052015
[9] Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C Science 352 aad4424 DOI: 10.1126/science.aad44242016
[10] Zhang J, Liao J, Shao L X, Xue S W and Wang Z G Chin. Phys. Lett. 35 083101 DOI: 10.1088/0256-307X/35/8/0831012018
[11] Sun K, Yan C, Huang J, Liu F, Li J, Sun H, Zhang Y, Cui X, Wang A, Fang Z, Cong J, Lai Y, Green M A and Hao X J. Mater. Chem. A 7 27289 DOI: 10.1039/C9TA09576D2019
[12] Lin S H and Cheng T H Jpn. J. Appl. Phys. 55 06GL06 DOI: 10.7567/JJAP.55.06GL062016
[13] Wei Y, Zhuang D, Zhao M, Zhang W, Ren G, Wu Y, Sun R, Gong Q, Zhang L, Zhan S, Peng X and Lyu X Solar Energy Materials and Solar Cells 180 19 DOI: 10.1016/j.solmat.2018.02.0022018
[14] Zhang S, Yu F, Yuan Q, Wang Y, Wei S, Tesfamichael T, Liang B and Wang H Solar Energy Materials and Solar Cells 200 109892 DOI: 10.1016/j.solmat.2019.04.0142019
[15] Sun H, Sun K, Huang J, Yan C, Liu F, Park J, Pu A, Stride J A, Green M A and Hao X ACS Appl. Energy Mater. 1 154 DOI: 10.1021/acsaem.7b000442017
[16] Yan Q, Cheng S, Li H, Yu X, Fu J, Tian Q, Jia H and Wu S Solar Energy 177 508 DOI: 10.1016/j.solener.2018.11.0302019
[17] Liu F, Lai Y, Liu J, Wang B, Kuang S, Zhang Z, Li J and Liu Y J. Alloys Compd. 493 305 DOI: 10.1016/j.jallcom.2009.12.0882010
[18] Mann J R, Vora N and Repins I L Solar Energy Materials and Solar Cells 94 333 DOI: 10.1016/j.solmat.2009.10.0092010
[19] Weber M, Krauser J, Weidinger A, Bruns J, Fischer C H and Bohne W J. Electrochem. Soc. 146 2131 DOI: 10.1149/1.13919031999
[20] Khan J, Yang X, Qiao K, Deng H, Zhang J, Liu Z, Ahmad W, Zhang J, Li D, Liu H, Song H, Cheng C and Tang J J. Mater. Chem. A 5 17240 DOI: 10.1039/C7TA05366E2017
[21] Yu X, Cheng S, Yan Q, Fu J, Jia H, Sun Q, Yang Z and Wu S Solar Energy Materials and Solar Cells 209 110434 DOI: 10.1016/j.solmat.2020.1104342020
[22] Yan Q, Cheng S, Yu X, Jia H, Fu J, Zhang C, Zheng Q and Wu S Solar RRL 4 1900410 DOI: 10.1002/solr.v4.12019
[23] Shi J, Li D, Luo Y, Wu H and Meng Q Rev. Sci. Instrum. 87 123107 DOI: 10.1063/1.49721042016
[24] Yu X, Cheng S, Yan Q, Yu J, Qiu W, Zhou Z, Zheng Q and Wu S RSC Adv. 8 27686 DOI: 10.1039/c8ra04958k2018
[25] Ke W, Zhao D, Cimaroli A J, Grice C R, Qin P, Liu Q, Xiong L, Yan Y and Fang G J. Mater. Chem. A 3 24163 DOI: 10.1039/C5TA06574G2015
[26] Zhang G, Jiang S, Lin Y, Ren W, Cai H, Wu Y, Zhang Q, Pan N, Luo Y and Wang X J. Mater. Chem. A 2 5675 DOI: 10.1039/C3TA14539E2014
[27] Ishaq M, Deng H, Yuan S, Zhang H, Khan J, Farooq U, Song H and Tang J Solar RRL 2 1800144 DOI: 10.1002/solr.v2.102018
[28] Li Q, Shen K, Yang R, Zhao Y, Lu S, Wang R, Dong J and Wang D Solar Energy 157 216 DOI: 10.1016/j.solener.2017.08.0232017
[29] Wang H, Wang Y, He B, Li W, Sulaman M, Xu J, Yang S, Tang Y and Zou B ACS Appl. Mater. Interf. 8 18526 DOI: 10.1021/acsami.6b031982016
[30] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B Adv. Energy Mater. 4 1301465 DOI: 10.1002/aenm.2013014652014
[31] Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X and Tang J Adv. Funct. Mater. 29 1901720 DOI: 10.1002/adfm.v29.312019
[32] Hu X, Tao J, Chen S, Xue J, Weng G, Kaijiang, Hu Z, Jiang J, Chen S, Zhu Z and Chu J Solar Energy Materials and Solar Cells 187 170 DOI: 10.1016/j.solmat.2018.08.0062018
[33] Gaarenstroom S W and Winograd N J. Chem. Phys. 67 3500 DOI: 10.1063/1.4353471977
[34] Wang L, Luo M, Qin S, Liu X, Chen J, Yang B, Leng M, Xue D J, Zhou Y, Gao L, Song H and Tang J Appl. Phys. Lett. 107 143902 DOI: 10.1063/1.49325442015
[35] Kostoglou M, Andritsos N and Karabelas A J Industrial & Engineering Chemistry Research 39 3272 DOI: 10.1021/ie990472q2000
[36] Yang G, Tao H, Qin P, Ke W and Fang G J. Mater. Chem. A 4 3970 DOI: 10.1039/C5TA09011C2016
[37] Zhang A, Zhou Z, Zhou W, Kou D, Meng Y, Qi Y, Yuan S and Wu S Solar RRL 3 1900131 DOI: 10.1002/solr.v3.102019
[38] Leever B J, Bailey C A, Marks T J, Hersam M C and Durstock M F Adv. Energy Mater. 2 120 DOI: 10.1002/aenm.2011003572012
[39] Pang S, Zhang C, Dong H, Chen D, Zhu W, Xi H, Chang J, Lin Z, Zhang J and Hao Y ACS Appl. Energy Mater. 2 4700 DOI: 10.1021/acsaem.9b001692019
[40] Yan W, Huo M M, Hu R and Wang Y RSC Adv. 9 1734 DOI: 10.1039/C8RA09330J2019
[41] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J Nat. Energy 2 1 DOI: 10.1038/nenergy.2016.1772016
[42] Min X, Shi J, Guo L, Yu Q, Zhang P, Tian Q, Li D, Luo Y, Wu H, Meng Q and Wu S Chin. Phys. B 27 016402 DOI: 10.1088/1674-1056/27/1/0164022018
[1] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
No Suggested Reading articles found!