|
|
A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2 |
Hui Wan(万惠)1, Zhixiao Liu(刘智骁)1, Guangdong Liu(刘广东)2, Shuaiyu Yi(易帅玉)2, Fei Gao(高飞)3, Huiqiu Deng(邓辉球)2, Dingwang Yuan(袁定旺)1, and Wangyu Hu(胡望宇)1,† |
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 2 School of Physics and Electronics, Hunan University, Changsha 410082, China; 3 Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA |
|
|
Abstract Ni-rich layered lithium transition metal oxides LiNixMnyCozO2 (1 - y-z ≥ 0.6) are promising candidates for cathode materials, but their practical applications are hindered by high-voltage instability and fast capacity fading. Using density functional theory calculations, we demonstrate that Na-, F-doping, and Na/F-co-doping can stabilize the structure and result into a higher open circuit voltage than pristine LiNi0.6Mn0.2Co0.2O2 (NMC622) during the charging process, which may attain greater discharge capacity. F doping may inhibit the diffusion of Li ions at the beginning and end of charging; Na doping may improve Li ion diffusion due to the increase in Li layer spacing, consistent with prior experiments. Na/F-co-doping into NMC622 promotes rate performance and reduces irreversible phase transitions for two reasons: (i) a synergistic effect between Na and F can effectively restrain the Ni/Li mixing and then enhances the mobility of Li ions and (ii) Ni/Li mixing hinders the Ni ions to migrate into Li layers and thus, stabilizes the structure. This study proposes that a layer cathode material with high electrochemical performance can be achieved via rational dopant modification, which is a promising strategy for designing efficient Li ion batteries.
|
Received: 06 January 2021
Revised: 20 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802092 and 51771073) and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Wangyu Hu
E-mail: wyuhu@hnu.edu.cn
|
Cite this article:
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇) A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2 2021 Chin. Phys. B 30 073101
|
[1] Yang Z, Zhang W, Shen Y, Yuan L X and Huang Y H 2016 Acta Phys-Chim. Sin. 32 1062 [2] Wu M S, Xu B and Ouyang C Y 2016 Chin. Phys. B 25 018206 [3] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212 [4] Li Y, Wang S, Chen Y, Lei T, Deng S, Zhu J, Zhang J and Guo J 2020 Mater. Chem. Phys. 240 122029 [5] Yu X Q, Hu E Y, Bak S, Zhou Y N and Yang X Q 2016 Chin. Phys. B 25 018205 [6] Pang W K, Lin H F, Peterson V K, Lu C Z, Liu C E, Liao S C and Chen J M 2017 Chem. Mater. 29 10299 [7] Li Q, Liu Z, Zheng F, Liu R, Lee J, Xu G L, Zhong G, Hou X, Fu R, Chen Z, Amine K, Mi J, Wu S, Grey C P and Yang Y 2018 Angew. Chem. Int. Ed. 57 11918 [8] Manthiram A, Knight J C, Myung S T, Oh S M and Sun Y K 2016 Adv. Energy Mater. 6 1501010 [9] Mu L, Zhang R, Kan W H, Zhang Y, Li L, Kuai C, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L and Lin F 2019 Chem. Mater. 31 9769 [10] Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C and Zhang J G 2018 Nat. Energy 3 600 [11] Zhang Y, Su Z, Yao X and Wang Y B 2015 Rsc Adv. 5 90150 [12] Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung S T and Sun Y K 2010 Adv. Mater. 22 3052 [13] Hashigami S, Kato Y, Yoshimi K, Yoshida H, Inagaki T, Hashinokuchi M, Doi T and Inaba M 2018 Electrochim. Acta 291 304 [14] Dianat A, Seriani N, Bobeth M and Cuniberti G 2013 J. Mater. Chem. A 1 9273 [15] Duc L V and Lee J W 2018 J. Solid State Electrochem. 22 1165 [16] Li Y Y, Si Y, Han E X, Huang W Q, Hu W, Pan A, Fan X and Huang G F 2020 J. Phys. D: Appl. Phys. 53 015502 [17] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S 2017 Appl. Phys. A-Mater. 123 96 [18] Wang Z, Wang D, Zou Z, Song T, Ni D, Li Z, Shao X, Yin W, Wang Y, Luo W, Wu M, Avdeev M, Xu B, Shi S, Ouyang C and Chen L 2020 Natl. Sci. Rev. 7 1768 [19] Li L J, Wang Z X, Liu Q C, Ye C, Chen Z Y and Gong L 2012 Electrochim. Acta 77 89 [20] Kang K S, Meng Y S, Breger J, Grey C P and Ceder G 2006 Science 311 977 [21] Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q and Yang Z 2015 Electrochim. Acta 182 795 [22] Li Y H, Liu J Y, Lei Y K, Lai C Y and Xu Q J 2017 J. Mater. Sci. 52 13596 [23] Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson E M, Ghanty C, Major D T, Markovsky B and Aurbach D 2016 J. Mater. Chem. A 4 16073 [24] Yiming W, Giuli G, Moretti A, Nobili F, Fehr K T, Paris E and Marassi R 2015 Mater. Chem. Phys. 155 191 [25] Na S H, Kim H S and Moon S I 2005 Solid State Ionics 176 313 [26] Yue P, Wang Z X, Li X H, Xiong X H, Wang J X, Wu X W and Guo H J 2013 Electrochim. Acta 95 112 [27] Yue P, Wang Z, Wang J, Guo H, Xiong X and Li X 2013 Powder Technol. 237 623 [28] Zhou S, Wang G X, Tang W J, Xiao Y and Yan K P 2018 Electrochim. Acta 261 565 [29] Wang D, Wang Z X, Li X H, Guo H J, Xu Y, Fan Y L and Pan W 2016 Appl. Surf. Sci. 371 172 [30] Yang Z, Zhang Z, Pan Y, Zhao S, Huang Y, Wang X, Chen X and Wei S 2016 J. Solid State Chem. 244 52 [31] Huang Z, Wang Z, Jing Q, Guo H, Li X and Yang Z 2016 Electrochim. Acta 192 120 [32] Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo X D, Zhong B, Wang Y J and Wang X 2014 Dalton T. 43 14824 [33] Wu K, Jia G, Shangguan X, Yang G, Zhu Z, Peng Z, Zhuge Q, Li F, Cui X and Liu S 2018 Energy Technol. 6 1885 [34] Wang Y Y, Sun Y Y, Liu S, Li G R and Gao X P 2018 Acs Appl. Energ. Mater. 1 3881 [35] Su J, Pei Y, Yang Z and Wang X 2015 Comput. Mater. Sci. 98 304 [36] Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H and Peng P 2014 Appl. Phys. A-Mater. 116 741 [37] Li H, Yang X and Zhang H 2020 Chin. Phys. B 29 060502 [38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [41] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107 [42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [43] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901 [44] Zeng D, Cabana J, Breger J, Yoon W S and Grey C P 2007 Chem. Mater. 19 6277 [45] Naghash A R and Lee J Y 2001 Electrochim. Acta 46 2293 [46] Wang J, Lin W, Wu B and Zhao J 2014 Electrochim. Acta 145 245 [47] Min K, Kim K, Jung C, Seo S W, Song Y Y, Lee H S, Shin J and Cho E 2016 J. Power Sources 315 111 [48] Min K, Seo S W, Song Y Y, Lee H S and Cho E 2017 Phys. Chem. Chem. Phys. 19 1762 [49] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [50] Wang M, Chen Y, Wu F, Su Y, Chen L and Wang D 2010 Electrochim. Acta 55 8815 [51] Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q and Fu Z W 2017 Nat. Commun. 8 566 [52] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 4529 [53] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121 [54] Han J, Liu P, Ito Y, Guo X, Hirata A, Fujita T and Chen M 2018 Nano Energy 45 273 [55] Dixit M, Markovsky B, Aurbach D and Major D T 2017 J. Electrochem. Soc. 164 A6359 [56] Hu G, Gan Z, Cao Y, Du K, Du Y and Peng Z 2018 Electrochim. Acta 292 502 [57] Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K and Pan F 2015 J. Am. Chem. Soc. 137 8364 [58] Lv W J, Huang Z, Yin Y X, Yao H R, Zhu H L and Guo Y G 2019 ChemNanoMat 5 1253 [59] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. Engl. 54 4440 [60] Gao A, Sun Y, Zhang Q, Zheng J and Lu X 2020 J. Mater. Chem. A 8 6337 [61] Zhao R R, Yang Z L, Liang J X, Lu D L, Liang C C, Guan X C, Gao A M and Chen H Y 2016 J. Alloys Compd. 689 318 [62] Tang Z F, Wang S, Liao J Y, Wang S, He X D, Pan B C, He H Y and Chen C H 2019 Research 2198906 [63] Yan P, Zheng J, Zhang J G and Wang C 2017 Nano Lett. 17 3946 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|