Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073102    DOI: 10.1088/1674-1056/abf559
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method

Juan Zhao(赵娟)1, Da-Guang Yue(岳大光)1, Lu-Lu Zhang(张路路)1, Shang Gao(高尚)1, Zhong-Bo Liu(刘中波)1, and Qing-Tian Meng(孟庆田)2,†
1 School of Science, Shandong Jiaotong University, Jinan 250357, China;
2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  State-to-state time-dependent quantum dynamics calculations have been carried out to study ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HH}^{\prime}+{\rm D/HD}+{\rm H}^{\prime}$ reactions on BKMP2 surface. The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results, moreover the rotational state-resolved reaction cross sections of ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HH}^{\prime}+{\rm D}$ at collision energy $E_{\rm C} =0.5$ eV are closer to the experimental values than the ones calculated by Chao et al. [J. Chem. Phys. 117 8341 (2002)], which proves the higher precision of the quantum calculation in this work. In addition, the state-to-state dynamics of ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HD}^{\prime}+{\rm H}$ reaction channel have been discussed in detail, and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.
Keywords:  state-to-state      time-dependent quantum wave-packet method      differential cross sections  
Received:  12 March 2021      Revised:  01 April 2021      Accepted manuscript online:  07 April 2021
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504206 and 12004216), the Ph. D. Research Start-up Fund of Shandong Jiaotong University (Grant No. BS2020025), and the Shandong Natural Science Foundation, China (Grant Nos. ZR2020MF102 and ZR2020QA064).
Corresponding Authors:  Qing-Tian Meng     E-mail:  qtmeng@sdnu.edu.cn

Cite this article: 

Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田) State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method 2021 Chin. Phys. B 30 073102

[1] Wrede E, Schnieder L, Welge K H, Aoiz F J, Bañares L, Castillo J F, Haya B M and Herrero V J 1999 J. Chem. Phys. 110 9971
[2] Harich S A, Dai D, Wang C C, Yang X, Chao S D and Skodje R T 2002 Nature 419 281
[3] Harich S A, Dai D, Yang X, Chao S D and Skodje R T 2002 J. Chem. Phys. 116 4769
[4] Ausfelder F, Pomerantz A E, Zare R N, Althorpe S C, Aoiz F J, Bañares L and Castillo J F 2004 J. Chem. Phys. 120 3255
[5] Pomerantz A E, Ausfelder F, Zare R N, Marcos J C J, Althorpe S C, Rábanos V S, Aoiz F J, Bañares L and Castillo J F 2004 J. Chem. Phys. 121 6587
[6] Koszinowski K, Goldberg N T, Pomerantz A E, Zare R N, Juanes-Marcos J C and Althorpe S C 2005 J. Chem. Phys. 123 054306
[7] Wrede E and Schnieder L 1997 J. Chem. Phys. 107 786
[8] Sun J C, Choi B H, Poe R T and Tang K T 1980 Phys. Rev. Lett. 44 1211
[9] Haug K, Schwenke D W, Shima Y, Truhlar D G, Zhang J and Kouri D J 1986 J. Phys. Chem. 90 6757
[10] Althorpe S C, Fernández Alonso F, Bean B D, Ayers J D, Pomerantz A E, Zare R N and Wrede E 2002 Nature 416 67
[11] Mielke S L, Peterson K A, Schwenke D W, Garrett B C, Truhlar D G, Michael J V, Su M C and Sutherland J W 2003 Phys. Rev. Lett. 91 063201
[12] Michael J V, Su M C and Sutherland J W 2004 J. Phys. Chem. A 108 432
[13] Vaníček J, Miller W H, Castillo J F and Aoiz F J 2005 J. Chem. Phys. 123 054108
[14] Juanes-Marcos J C and Althorpe S C 2005 J. Chem. Phys. 122 204324
[15] Hankel M, Smith S C, Allan R J, Gray S K and Kurti G G B 2006 J. Chem. Phys. 125 164303
[16] Chu T S, Han K L, Hankel M and Kurti G G B 2007 J. Chem. Phys. 126 214303
[17] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[18] Truhlar D G and Horowitz C J 1978 J. Chem. Phys. 68 2466
[19] Varandas A J C, Brown F B, Mead C A, Truhlar D G and Blais N C 1987 J. Chem. Phys. 86 6258
[20] Boothroyd A I, Keogh W J, Martin P G and Peterson M R 1991 J. Chem. Phys. 95 4343
[21] Boothroyd A I, Keogh W J, Martin P G and Peterson M R 1996 J. Chem. Phys. 104 7139
[22] Mark Wu Y S, Kuppermann A and Anderson J 1999 Phys. Chem. Chem. Phys. 1 929
[23] Aoiz F J, Bañares L and Herrero V J 1998 J. Chem. Soc. 94 2483
[24] Aoiz F J, Bañares L and Herrero V J 2005 Inter. Rev. Phys. Chem. 24 119
[25] Skouteris D, Castillo J F and Manolopoulos D E 2000 Comp. Phys. Comm. 133 128
[26] Althorpe S C 2001 J. Chem. Phys. 114 1601
[27] Kendrick B K 2000 J. Chem. Phys. 112 5679
[28] Chao S D, Harich S A, Dai D X, Wang C C, Yang X and Skodje R T 2002 J. Chem. Phys. 117 8341
[29] Schnieder L, Rahn K S, Wrede E and Welge K H 1997 J. Chem. Phys. 107 6175
[30] Kendrick B K 2003 J. Chem. Phys. 118 10502
[31] Dai D X, Wang C C, Harich S A, Wang X Y, Yang X M, Chao S D and Skodje R T 2003 Science 300 1730
[32] Hochman Kowal S and Persky A 1997 Chem. Phys. 222 29
[33] Zhang P Y and Han K L 2014 J. Phys. Chem. A 118 8929
[34] Wei W, Gao S B, Sun Z P, Song Y Z and Meng Q T 2014 Chin. Phys. B 23 073101
[35] Zhang Y C, Zhang Y B, Zhan L X, Zhang S L, Zhang D H and Zhang Z H J 1998 Chin. Phys. Lett. 15 16
[36] Zhang J, Gao S B, Wu H and Meng Q T 2015 J. Phys. Chem. A 119 8959
[37] Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101
[38] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104
[39] Zhang Y 2016 Chin. Phys. B 25 123104
[40] Zhao J, Wu H, Sun H B and Wang L F 2018 Chin. Phys. B 27 023102
[41] Xu T, Zhao J, Wang X L and T M Q 2019 Chin. Phys. B 28 023102
[42] Wu H, Yao C X, He X H and Zhang P Y 2016 J. Chem. Phys. 144 184301
[43] Wu H, Duan Z X, Yin S H and Zhao G J 2016 J. Chem. Phys. 145 124305
[44] Fleck J A, Morris J R and Feit M D 1976 Appl. Phys. 10 129
[45] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[1] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[2] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[3] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[4] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[5] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[6] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[7] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[8] Single ionization of helium atoms by energetic fully stripped carbon ions
Ebrahim Ghanbari-Adivi, Sadjad Eskandari. Chin. Phys. B, 2015, 24(10): 103403.
[9] Electron impact ionization of neon and neonic ions under distorted-wave Born approximation
Zhou Li-Xia (周丽霞), Yan You-Guo (燕友果). Chin. Phys. B, 2014, 23(5): 053402.
[10] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
[11] Polarization effect in (e, 2e) reaction process for Ar (3s) in coplanar asymmetric geometry
Zhou Li-Xia (周丽霞), Wang Dian-Sheng (王殿生), Yan You-Guo (燕友果), Wang Cai-Ling (王彩玲). Chin. Phys. B, 2014, 23(11): 113402.
[12] The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br
Zhang Ying-Ying (张莹莹), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(8): 083402.
[13] Product polarization and mechanism of Li+HF(v=0, j=0)→LiF (v’, j’)+H collision reaction
Yue Xian-Fang (岳现房). Chin. Phys. B, 2013, 22(11): 113401.
[14] Influence of the reagent vibration on the stereo-dynamics of the reactions D- + H2 and H- + D2
Chen Xiao-Qiong(陈肖琼), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), and Wu Ji-Cheng(吴继成) % . Chin. Phys. B, 2012, 21(2): 023402.
[15] Theoretical study of stereodynamics for reaction O(3P)+HCl
Zhu Tong(朱通), Hu Guo-Dong(扈国栋), Chen Jian-Zhong(陈建中), Liu Xin-Guo(刘新国), and Zhang Qing-Gang(张庆刚). Chin. Phys. B, 2010, 19(8): 083402.
No Suggested Reading articles found!