|
|
A comparative study on radiation reliability of composite channel InP high electron mobility transistors |
Jia-Jia Zhang(张佳佳)1, Peng Ding(丁芃)2, Ya-Nan Jin(靳雅楠)1, Sheng-Hao Meng(孟圣皓)1, Xiang-Qian Zhao(赵向前)1, Yan-Fei Hu(胡彦飞)3, Ying-Hui Zhong(钟英辉)1,†, and Zhi Jin(金智)2 |
1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 3 Microelectronics Institute, Xidian University, Xi'an 710071, China |
|
|
Abstract This paper proposes a reasonable radiation-resistant composite channel structure for InP HEMTs. The simulation results show that the composite channel structure has excellent electrical properties due to increased modulation doping efficiency and carrier confinement. Moreover, the direct current (DC) and radio frequency (RF) characteristics and their reliability between the single channel structure and the composite channel structure after 75-keV proton irradiation are compared in detail. The results show that the composite channel structure has excellent radiation tolerance. Mechanism analysis demonstrates that the composite channel structure weakens the carrier removal effect. This phenomenon can account for the increase of native carrier and the decrease of defect capture rate.
|
Received: 03 November 2020
Revised: 07 January 2021
Accepted manuscript online: 04 February 2021
|
PACS:
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
95.30.Gv
|
(Radiation mechanisms; polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775191), the Natural Science Foundation of Henan Province, China (Grant No. 202300410379), the Promotion Funding for Excellent Young Backbone Teacher of Henan Province, China (Grant No. 2019GGJS017), Key Technologies Research and Development Program of Henan Province, China (Grant No.202102210321), and the Promotion Project for Physics Discipline in Zhengzhou University, China (Grant No. 2018WLTJ01). |
Corresponding Authors:
Ying-Hui Zhong
E-mail: zhongyinghui@zzu.edu.cn
|
Cite this article:
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智) A comparative study on radiation reliability of composite channel InP high electron mobility transistors 2021 Chin. Phys. B 30 070702
|
[1] Sengupta K, Nagatsuma T and Mittleman D M 2018 Nat. Electron. 1 622 [2] Chen Z, Ma X Y, Zhang B, Zhang Y X, Niu Z Q, Kuang N Y, Chen W J, Li L X and Li S Q 2019 China Commun. 16 1 [3] Ma L H, Han W H and Yang F H 2020 Chin. Phys. B 29 038104 [4] Ma L H, Han W H, Zhao X S, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 088106 [5] Lei S G, Ma L L, Li M K, Peng W, Zhong Y H, Su Y F and Duan Z Y 2018 J. Phys. D: Appl. Phys. 51 185603 [6] Mei X B, Yoshida W, Lange M, Lee J, Zhou J, Liu P H, Leong K, Zamora A, Padilla J, Sarkozy S, Lai R and Deal W R 2015 IEEE Electron Dev. Lett. 36 327 [7] Cha E J, Wadefalk N, Moschetti G, Pourkabirian A, Stenarson J and Grahn J 2020 IEEE Electron Dev. Lett. 41 1005 [8] Cha E J, Moschetti G, Wadefalk N, Nilsson P A, Bevilacqua S, Pourkabirian A, Starski P and Grahn J 2017 IEEE T. Microw. Theory 65 5171 [9] Alt A R, Bolognesi C R, Gallego J D, Diez C, Lopez-Fernandez I and Barcia A 2011 International Conference on Indium Phosphide and Related Materials, May 22-26, 2011, Berlin, Germany, p. 1 [10] Ajayan J, Nirmal D, Ravichandran T, Mohankumar P, Prajoon P, Arivazhagan L and Sarkar C K 2018 Int. J. Electron. Commun. (AE) 94 199 [11] Zhang Z, Cardwell D, Sasikumar A, Kyle E C H, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, Speck J S, Arehart A R and Ringel S A 2016 J. Appl. Phys. 119 165704 [12] Lee I H, Polyakov A Y, Yakimov E B, Smirnov N B, Shchemerov I V, Tarelkin S A, Didenko S I, Tapero K I, Zinovyev R A and Pearton S J 2017 Appl. Phys. Lett. 110 112102 [13] Chen J, Zhang E X, Zhang C X, McCurdy M W, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H and Speck J S 2014 IEEE Trans. Nucl. Sci. 61 2959 [14] Petitdidier S, Guhel Y, Trolet J L, Mary P, Gaquiere C and Boudart B 2019 IEEE Trans. Nucl. Sci. 66 810 [15] Meneghini M, Tajalli A, Moens P, Banerjee A, Stockman A, Tack M, Gerardin S, Bagatin M, Paccagnella A, Zanoni E and Meneghesso G 2017 IEEE International Electron Devices Meeting, December 2-6, 2017, San Francisco, USA, p. 753 [16] Sasaki H, Hisaka T, Kadoiwa K, Oku T, Onoda S, Ohshima T, Taguchi E and Yasuda H 2018 Microelectron. Reliab. 81 312 [17] Zheng X F, Dong S S, Ji P, Wang C, He Y L, Lv L, Ma X H and Hao Y 2018 Appl. Phys. Lett. 112 233504 [18] Zhang D L, Chen X H, Shen L Y, Zheng L, Gu Z Y, Liu X B and Yu Y H 2019 IEEE Trans. Electron Dev. 66 2215 [19] Weaver B D, Martin P A, Boos J B and Cress C D 2012 IEEE Trans. Nucl. Sci. 59 3077 [20] Weaver B D, Boos J B, Papanicolaou N A, Bennett B R, Park D and Bass R 2005 Appl. Phys. Lett. 87 173501 [21] Jackson E M, Weaver B D, Shojah-Ardalan S, Wilkins R, Seabaugh A C and Brar B 2001 Appl. Phys. Lett. 79 2279 [22] Sun S X, Liu H H, Yang B, Chang M M, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2020 Mater. Sci. Semicond. Proc. 114 105084 [23] Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P and Zhong Y H 2016 Chin. Phys. B 25 108501 [24] Sun S X, Ma L H, Cheng C, Zhang C, Zhong Y H, Li Y X, Ding P and Jin Z 2017 Phys. Status Solidi A 214 1700322 [25] Zhong Y H, Yang B, Chang M M, Ding P, Ma L H, Li M K, Duan Z Y, Yang J, Jin Z and Wei Z C 2020 Chin. Phys. B 29 38502 [26] Kalavagunta A, Touboul A, Shen L, Schrimpf R D, Reed R A, Fleetwood D M, Jain R K and Mishra U K 2008 IEEE Trans. Nucl. Sci. 66 810 [27] Sun S X, Chang M M, Li M K, Ma L H, Zhong Y H, Li Y X, Ding P, Jin Z and Wei Z C 2019 Chin. Phys. B 28 078501 [28] Ruiz D C, Saranovac T, Han D, Hambitzer A, Arabhavi A M, Ostinelli O and Bolognesi C R 2019 IEEE Trans. Electron Dev. 66 4685 [29] Yamashita Y, Endoh A, Shinohara K, Hikosaka K, Matsui T, Hiyamizu S and Mimura T 2002 IEEE Electron Dev. Lett. 23 573 [30] Jun B and Subramanian S 2002 IEEE Trans. Nucl. Sci. 49 3222 [31] Gaudreau F, Fournier P, Carlone C, Khanna S M, Tang H P, Webb J and Houdayer A 2002 IEEE Trans. Nucl. Sci. 49 2702 [32] Zhao J 1990 IEEE Trans. Electron Dev. 37 2158 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|