|
|
Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential |
Ji Li(李吉)1, Tianchen He(何天琛)1,†, Jing Bai(白晶)1, Bin Liu(刘斌)2, and Huan-Yu Wang(王寰宇)3 |
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China; 2 Basic Teaching Department, Shanxi Institute of Energy, Jinzhong 030600, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We investigate the ground states of spin-1 Bose-Einstein condensates (BECs) with spin-orbit coupling in a radially periodic potential by numerically solving the coupled Gross-Pitaevskii equations. In the radially periodic potential, we first demonstrate that spin-orbit-coupled antiferromagnetic BECs support a multiring petal phase. Polar-core vortex can be observed from phase profiles, which is manifested as circularly symmetric distribution. We further show that spin-orbit coupling can induce multiring soliton structure in ferromagnetic BECs. It is confirmed especially that the wave-function phase of the ring corresponding to uniform distribution satisfies the rotational symmetry, and the wave-function phase of the ring corresponding to partial splitting breaks the rotational symmetry. Adjusting the spin-orbit coupling strength can control the number of petal in antiferromagnetic BECs and the winding numbers of wave-function in ferromagnetic BECs. Finally, we discuss effects of spin-independent and spin-dependent interactions on the ground states.
|
Received: 07 August 2020
Revised: 01 October 2020
Accepted manuscript online: 28 October 2020
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
67.85.Fg
|
(Multicomponent condensates; spinor condensates)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the Scientific and Technologial Innovation Program of the Higher Education Institutions in Shanxi Province, China (Grant Nos. 2019L0813, 2019L0785, and 2019L0808). |
Corresponding Authors:
†Corresponding author. E-mail: tywlxdh@qq.com
|
Cite this article:
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇) Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential 2021 Chin. Phys. B 30 030302
|
1 Ho T L Phys. Rev. Lett. 81 742 2 Klausen N N, Bohn J L and Greene C H Phys. Rev. A 64 053602 3 G\"orlitz A, Gustavson T L, Leanhardt A E, L\"ow R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E and Ketterle W Phys. Rev. Lett. 90 090401 4 Bloch I, Dalibard J and Zwerger W Rev. Mod. Phys. 80 885 5 Stamper-Kurn D M and Ueda M Rev. Mod. Phys. 85 1191 6 Li L, Li Z D, Malomed B A, Mihalache D and Liu W M Phys. Rev. A 72 033611 7 Isoshima T, Machida K and Ohmi T J. Phys. Soc. Jpn. 70 1604 8 Tuchiya S J and Kurihara S J. Phys. Soc. Jpn. 70 1182 9 Kasamatsu K, Tsubota M and Ueda M Int. J. Mod. Phys. B 19 1835 10 Mizushima T, Machida K and Kita T Phys. Rev. A 66 053610 11 Martikainen J P, Collin A and Suominen K A Phys. Rev. A 66 053604 12 Mizushima T, Kobayashi N and Machida K Phys. Rev. A 70 043613 13 Ji A C, Liu W M, Song J L and Zhou F Phys. Rev. Lett. 101 010402 14 Seo S W, Kang S J, Kwon W J and Shin Y Phys. Rev. Lett. 115 015301 15 Seo S W, Kwon W J, Kang S J and Shin Y Phys. Rev. Lett. 116 185301 16 Orlova N V, Kuopanportti P and Milo\vsevi\'cM V Phys. Rev. A 94 023617 17 Lin Y J, Jim\'enez-Garc\'ía K and Spielman I B Nature 471 83 18 Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W Nat. Phys. 10 314 19 Wu Z, Zhang L, Sun W, 1 Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J and Pan J W Science 354 83 20 Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q and Zhang J Nat. Phys. 12 540 21 Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H and Zhang J Phys. Rev. Lett. 109 095301 22 Campbell D L, Juzeli\'unas G and Spielman I B Phys. Rev. A 84 025602 23 Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan J S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W Phys. Rev. Lett. 109 115301 24 Liu X J, Borunda M F, Liu X and Sinova J Phys. Rev. Lett. 102 046402 25 Anderson B M, Spielman I B and Juzeli\'unas G Phys. Rev. Lett. 111 125301 26 Anderson B M, Juzeli\'unas G, Galitski V M and Spielman I B Phys. Rev. Lett. 108 235301 27 Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W Phys. Rev. Lett. 109 095302 28 Ruseckas J, Juzeli\'unas G, \"Ohberg P and Fleischhauer M Phys. Rev. Lett. 95 010404 29 Lan Z H and \"Ohberg P Phys. Rev. A 89 023630 30 Wang C J, Gao C, Jian C M and Zhai H Phys. Rev. Lett. 105 160403 31 Su S W, Liu I K, Tsai Y C, Liu W M and Gou S C Phys. Rev. A 86 023601 32 Sinha S, Nath R and Santos L Phys. Rev. Lett. 107 270401 33 Hu H, Ramachandhran B, Pu H and Liu X J Phys. Rev. Lett. 108 010402 34 Li J, Yu Y M, Zhuang L and Liu W M Phys. Rev. A 95 043633 35 Li J, Zhang X F and Liu W M Ann. Phys.-New York 396 87 36 Gopalakrishnan S, Martin I and Demler E A Phys. Rev. Lett. 111 185304 37 Mason P and Berloff N G Phys. Rev. A 79 043620 38 Ryu C, Andersen M F, Clad\'e P, Natarajan V, Helmerson K and Phillips W D Phys. Rev. Lett. 99 260401 39 Abad M, Guilleumas M, Mayol R and Pi M Phys. Rev. A 81 043619 40 Zhang X F, Kato M, Han W, Zhang S G and Saito H Phys. Rev. A 95 033620 41 White A C, Zhang Y P and Busch T Phys. Rev. A 95 041604(R) 42 Karabulut E \"O, Malet F, Fetter A L, Kavoulakis G M and Reimann S M New J. Phys. 18 015013 43 Wang J G, Xu L L and Yang S J Phys. Rev. A 96 033629 44 Kartashov Y V and Zezyulin D A Phys. Rev. Lett. 122 123201 45 Baizakov B B, Malomed B A and Salerno M Phys. Rev. E 74 066615 46 Song S W, Sun R, Zhao H, Wang X and Han B Z Chin. Phys. B 25 040305 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|