|
|
Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states |
Guang Yang(杨光)†, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲) |
1 School of Communications and Information Engineering & School of Artificial Intelligence, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract Entanglement swapping is a key technology for multi-hop communication based on entanglement in quantum networks. However, the end-to-end delay of the traditional sequential entanglement swapping (SEQES) grows rapidly with the increase of network scale. To solve this problem, we first propose a low-delay multi-particle simultaneous entanglement swapping (SES) scheme to establish the remote four-particle Greenberger-Horne-Zeilinger (GHZ) channel states for the bidirectional teleportation of three-particle GHZ states, in which the intermediate nodes perform Bell state measurements, send the measurement results and the Bell state type to the user node Bob (or Alice) through classical channel simultaneously. Bob (or Alice) only needs to carry out a proper unitary operation according to the information he (or she) has received. Further, we put forward a hierarchical simultaneous entanglement swapping (HSES) scheme to reduce the classical information transmission cost, which is composed of level-1 SES and level-2 SES (schemes). The former is an inner segment SES, and the latter is an inter segments SES. Theoretical analysis and simulation results show the HSES can obtain the optimal performance tradeoff between end-to-end delay and classical cost.
|
Received: 10 August 2020
Revised: 08 November 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61971348), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033). |
Corresponding Authors:
†Corresponding author. E-mail: sharon.yg@163.com
|
Cite this article:
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲) Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states 2021 Chin. Phys. B 30 030301
|
1 Bennett C H, Brassard G, Cr\'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 2 Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307 3 Zhou R G, Chen Q and Hou I 2019 IEEE Access 7 42445 4 Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656 5 Guo Y, Liu B H, Li C F and Guo G C 2019 Adv. Quantum Technol. 2 1900011 6 Tian M B and Zhang G F2018 Quantum Inf. Process. 17 19 7 Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 8 Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China-Phys. Mech. Astron. 62 110311 9 Du G H, Li H W, Wang Y and Bao W S 2019 Chin. Phys. B 28 090301 10 Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 44305 11 Li J, Zhou Z Y, Wang N, Tian Y, Yang Y G and Zheng Y 2019 IEEE Access 7 43948 12 Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362 13 Xu H X 2014 [J]. CAEIT 9 259 (in Chinese) 14 Takenaka H, Carrasco-Casado A, Fujiwara M, Kitamura M, Sasaki M and Toyoshima M 2017 Nat. Photonics. 11 502 15 Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70 16 Zukowski M, Zeilinger A, Horne M A and Ekert A K 2018 Quantum Inf. Process. 17 19 17 Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Area. Comm 23 1424 18 Zhou X Q, Wu Y W and Zhao H 2011 Acta Phys. Sin. 60 040304 (in Chinese) 19 Chen P, Cai Y X, Cai X F, Shi L H and Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese) 20 Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) 21 Liu X H, Nie M and Pei CX 2013 Acta Phys. Sin. 62 200304 (in Chinese) 22 Wang K, Yu X T, Lu S L and Gong Y X 2014 Phys. Rev. A 89 022329 23 Cai R, Yu X T and Zhang Z C 2018 Int. J. Theor. Phys. 57 1723 24 Gao X Q, Zhang Z C and Sheng B 2018 J. Mod. Opt. 65 1698 25 Gao X Q, Zhang Z C and Sheng B 2018 Front. Phys. 13 130314 26 Zou Z Z, Yu X T and Zhang Z C 2018 Front. Phys. 13 130202 27 Zhang Z H, Wang J W and Sun M 2018 Int. J. Theor. Phys 57 3605 28 Deng F G, Li CY, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338 29 He X L, Liu M and Yang C P 2015 Quantum Inf. Process. 14 1055 30 Sun S Y, Li L X and Zhang H S 2020 Int. J. Theor. Phys. 59 1017 31 Zha X W, Zou Z C, Qi J X and Song H Y 2013 Int. J. Theor. Phys. 52 1740 32 Yang G, Lian B, Nie M and Jin J 2017 Chin. Phys. B 26 040305 33 Zhou R G and Zhang Y N 2019 Int. J. Theor. Phys. 58 3594 34 Hillery M, Bu\vzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 35 Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D and Peng K C 2018 Phys. Rev. Lett. 121 150502 36 Qin H W and Dai Y W 2017 Quantum Inf. Process. 16 64 37 Xu G B, Wen Q Y, Gao F and Qin S J 2014 Quantum Inf. Process. 13 2587 38 Sun Z W, Yu J P and Wang P 2016 Quantum Inf. Process. 15 373 39 Cai T, Jiang M and Cao G 2018 Quantum Inf. Process. 17 103 40 Braunstein S L and Mann A 1995 Phys. Rev. A 51 R1727 41 L\"utkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295 42 Calsamiglia J and L\"utkenhaus N 2001 Appl. Phys. B 72 67 43 Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302 44 Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318 45 Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664 46 Grice W P 2011 Phys. Rev. A 84 042331 47 Zaidi H A and van Loock P 2013 Phys. Rev. Lett. 110 260501 48 Kwiat P G and Weinfurter H 1998 Phys. Rev. A 58 R2623 49 Walborn S P, P\'adua S and Monken C H 2003 Phys. Rev. A 68 042313 50 Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L and Zhao S M 2013 Chin. Phys. B 22 030314 51 Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501 52 Williams B P, Sadlier R J and Humble T S 2017 Phys. Rev. Lett. 118 050501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|