Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 016105    DOI: 10.1088/1674-1056/ac4024

Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re

Liping Liu(刘立平)1, Jin Cao(曹晋)1, Wei Guo(郭伟)1,†, and Chongyu Wang(王崇愚)2,‡
1 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Heavy elements (X= Ta/W/Re) play an important role in the performance of superalloys, which enhance the strength, anti-oxidation, creep resistance, and anti-corrosiveness of alloy materials in a high-temperature environment. In the present research, the heavy element doping effects in FCC-Ni(γ) and Ni3Al(γ') systems are investigated in terms of their thermodynamic and mechanical properties, as well as electronic structures. The lattice constant, bulk modulus, elastic constant, and dopant formation energy in non-spin, spin polarized, and spin-orbit coupling (SOC) calculations are compared. The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements. We find that including spin for both γ and γ' phases is necessary and sufficient for most cases, but the dopant formation energy is sensitive to different spin effects, for instance, in the absence of SOC, even spin-polarized calculations give 1% to 9% variance in the dopant formation energy in our model. Electronic structures calculations indicate that spin polarization causes a split in the metal d states, and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system.
Keywords:  nickel-based superalloys      Ni3Al      spin      spin-orbit coupling      mechanical properties      electronic structures  
Received:  16 November 2021      Revised:  01 December 2021      Accepted manuscript online:  05 December 2021
PACS:  61.66.Dk (Alloys )  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0701603 and 2017YFB0701502).
Corresponding Authors:  Wei Guo, Chongyu Wang     E-mail:;

Cite this article: 

Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚) Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re 2022 Chin. Phys. B 31 016105

[1] Reed R C 2008 The superalloys: fundamentals and applications (Cambridge: Cambridge Univ. Press)
[2] Caron P and Khan T 1999 Aerospace Science and Technology 3 513
[3] Betteridge W 1984 Nickel and its alloys monographs in toxicology: Environmental and safety aspects (New York: Halsted Press)
[4] Furrer D and Fecht H 1999 JOM 51 14
[5] Zhu Z, Basoalto H, Warnken N and Reed R 2012 Acta Materialia 60 4888
[6] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C, Wang Y and Mills M J 2009 Progress in Materials Science 54 839
[7] Zhang H, Zhang S, Cheng M and Li Z 2010 Materials characterization 61 49
[8] Liang W, Jiang Y, He Y, Xu N, Zou J, Huang B, Liu C and others 2011 Intermetallics 19 1759
[9] Hemker K, Mills M and Nix W 1991 Acta metallurgica et materialia 39 1901
[10] Booth-Morrison C, Mao Z, Noebe R D and Seidman D N 2008 Appl. Phys. Lett. 93 033103
[11] Lin H and Pope D P 1990 Journal of Materials Research 5 763
[12] Garimella N, Ode M, Ikeda M, Murakami H and Sohn Y H 2008 Intermetallics 16 1095
[13] Hattori M, Goto N, Murata Y, Koyama T and Morinaga M 2006 Materials Transactions 47 331
[14] Chen C, Zhang L, Xin J, Wang Y, Du Y, Luo F, Zhang Z, Xu T and Long J 2015 J. Alloys Compd. 645 259
[15] Garimella N, Ode M, Ikeda M, Murakami H and Sohn Y H 2009 Journal of Phase Equilibria and Diffusion 30 246
[16] Mabruri E, Sakurai S, Murata Y, Koyama T and Morinaga M 2008 Materials Transactions 49 1441
[17] Chiba A, Hanada S and Watanabe S 1992 Materials Science and Engineering: A 108
[18] Peng P, Soh A, Yang R and Hu Z 2006 Computational Materials Science 38 354
[19] Zhang X and Wang C Y 2009 Acta materialia 57 224
[20] Wang C and Wang C Y 2008 Surface Science 602 2604
[21] Gong X F, Yang G X, Fu Y H, Xie Y Q, Zhuang J and Ning X J 2009 Computational Materials Science 47 320
[22] Yu X X and Wang C Y 2012 Materials Science and Engineering: A 539 38
[23] Kumar K, Sankarasubramanian R and Waghmare U V 2018 Computational Materials Science 150 424
[24] Aguayo A, Mazin I and Singh D 2004 Phys. Rev. Lett. 92 147201
[25] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[30] Van Lenthe E, Baerends E J and Snijders J G 1993 Journal of Chemical Physics 99 4597
[31] Griffiths D J and Schroeter D F 2018 Introduction to quantum mechanics (Cambridge University Press)
[32] Vinet P, Smith J R, Ferrante J and Rose J H 1987 Phys. Rev. B 35 1945
[33] Birch F 1947 Phys. Rev. 71 809
[34] Murnaghan F 1944 Proc. Natl. Acad. Sci. USA 30 244
[35] Larsen A H, Mortensen J J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002
[36] Milstein F 1971 Phys. Rev. B 3 1130
[37] Hartsuijker C and Welleman J W 2007 Engineering mechanics. Vol. 2: Stresses, strains, displacements, edn. (Dordrecht: Springer)
[38] Hill R 1952 Proc. Phys. Soc. A 65 349
[39] Jiang C, Sordelet D J and Gleeson B 2006 Acta Materialia 54 1147
[40] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Computational Materials Science 68 314
[41] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Computer Physics Communications 267 108033
[42] Setyawan W and Curtarolo S 2010 Computational Materials Science 49 299
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[6] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[7] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[8] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[9] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[12] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[13] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[14] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[15] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
No Suggested Reading articles found!