Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073104    DOI: 10.1088/1674-1056/ac003f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling

Shu-Tao Zhao(赵书涛)1,2, Xin-Peng Liu(刘鑫鹏)3, Rui Li(李瑞)3,†, Hui-Jie Guo(国慧杰)3, and Bing Yan(闫冰)2,‡
1 Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, School of Physics and Electronic Science, Fuyang Normal University, Fuyang 236037, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
3 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
Abstract  The multi-reference configuration interaction method plus Davidson correction (MRCI$+$Q) are adopted to study the low-lying states of SH with consideration of scalar relativistic effect, core-valence (CV) electron correlation, and spin-orbit coupling (SOC) effect. The SOC effect on the low-lying states is considered by utilizing the full Breit-Pauli operator. The potential energy curves (PECs) of 10 $\Lambda$-S states and 18 $\Omega$ states are calculated. The dipole moments of 10 $\Lambda$-S states are calculated, and the variation along the internuclear distance is explained by the electronic configurations. With the help of calculated SO matrix elements, the possible predissociation channels of A$^{2}\Sigma^{+}$, c$^{4}\Sigma^{-}$ and F$^{2}\Sigma^{-}$ are discussed. The Franck-Condon factors of A$^{2}\Sigma^{+}$-X$^{2}\Pi $, F$^{2}\Sigma^{-}$-X$^{2}\Pi $ and E$^{2}\Sigma^{+}$-X$^{2}\Pi$ transitions are determined, and the radiative lifetimes of A$^{2}\Sigma^{+}$ and F$^{2}\Sigma^{-}$ states are evaluated, which are in good agreement with previous experimental results.
Keywords:  SH      MRCI+Q      potential energy curves      spin-orbit coupling  
Received:  12 April 2021      Revised:  10 May 2021      Accepted manuscript online:  12 May 2021
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874177), the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q20189), the Natural Science Research Project of the Education Department of Anhui Province, China (Grant Nos. KJ2020A0544 and KJ2018A0335), and the Excellent Youth Talent Project of the Education Department of Anhui Province, China (Grant No. gxyqZD2019046).
Corresponding Authors:  Rui Li, Bing Yan     E-mail:  ruili06@mails.jlu.edu.cn;yanbing@jlu.edu.cn

Cite this article: 

Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰) Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling 2021 Chin. Phys. B 30 073104

[1] Finlayson-Pitts B J and Pitts Jr J N 1999 Chemistry of the upper and lower atmosphere: theory, experiments, and applications (Elsevier)
[2] Tyndall G S and Ravishankara A R 1991 Int. J. Chem. Kinet. 23 483
[3] Lushchak V I 2007 Biochemistry Moscow 72 809
[4] Duley W W, Millar T J and Williams D A 1979 Astrophys Space Sci. 65 69
[5] Yamamura I, Kawaguchi K and Ridgway S T 2000 Astrophy. J. 528 L33
[6] Porter G 1950 Discuss. Faraday Soc. 9 60
[7] Ramsay D A 1951 J. Am. Chem. Soc. 74 72
[8] Huber K P and Herzberg G 1979 Molecular spectra and molecular structure: IV. Constants of diatomic molecules (New York: Van Nostrand Reinhold)
[9] Morrow B A 1966 Can. J. Phys. 44 2447
[10] Schnieder L, Meier W, Welge K H, Ashfold M N R and Western C M 1990 J. Chem. Phys. 92 7027
[11] Pathak C M and Palmer H B 1969 J. Mol. Spec. 32 157
[12] Ubachs W and Ter Meulen J J 1983 Chem. Phys. Lett. 101 1
[13] Ram R S, Bernath P F, Engleman R and Brault J W 1995 J. Mol. Spec. 172 34
[14] Milan J B, Buma W J and de Lange C A 1996 J. Chem. Phys. 105 6688
[15] Wheeler M D, Orr-Ewing A J and Ashfold M N R 1997 J. Chem. Phys. 107 7591
[16] Wheeler M D, Orr-Ewing A J, Ashfold M N R and Ishiwata T 1997 Chem. Phys. Lett. 268 421
[17] Hirst D M and Guest M F 1982 Mol. Phys. 46 427
[18] Park J K and Sun H 1992 Chem. Phys. Lett. 194 485
[19] Senekowitsch J, Werner H, Rosmus P and Reinsch E 1985 J. Chem. Phys. 83 4661
[20] Bruna P J and Hirsch G 1987 Mol. Phys. 61 1359
[21] Lee S, Sun H, Kim B and Freed K F 2001 J. Chem. Phys. 114 5537
[22] Resende S M and Ornellas F R 2001 J. Chem. Phys. 115 2178
[23] Brites V, Hammout'ene D and Hochlaf M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 45101
[24] Yang X, Xu H F and Yan B 2019 Chin. Phys. B 28 013203
[25] Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R and Wu Y 2019 Chin. Phys. B 28 053101
[26] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y and Buenker R J 2020 Chin. Phys. Lett. 37 023401
[27] Liang G Y, Peng Y G, Li R, Wu Y and Wang J G 2020 Chin. Phys. Lett. 37 123101
[28] Bai S Y, Bai J X, Han X X, Jiao Y C, Zhao J M and Jia S T 2020 Chin. Phys. Lett. 37 123201
[29] Zhang D H, Xie L Y, Jiang J and Dong C Z 2019 Chin. Phys. Lett. 36 83401
[30] Ibraguimova L B and Minaev B F 2016 Opt. Spec. 120 345
[31] Li R, Xu L X, Teng Y F, Liang G Y, Zhao S T and Wu Y 2020 J. Quan. Spec. Radia. Trans. 247 106983
[32] Werner H, Knowles P J, Knizia G, Manby F R and Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[33] Dunning T H, Peterson K A and Wilson A K 2001 J. Chem. Phys. 114 9244
[34] Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[35] DeYonker N J, Peterson K A and Wilson A K 2007 J. Phys. Chem. A. 111 11383
[36] Knowles P J and Werner H 1985 Chem. Phys. Lett. 115 259
[37] Werner H and Knowles P J 1988 J. Chem. Phys. 89 5803
[38] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[39] Douglas M and Kroll N M 1974 Annals Phys. 82 89
[40] Hess B A 1986 Phys. Rev. A. 33 3742
[41] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167
[42] Moore C E 1971 Atomic energy levels (National Bureau of Standard: Washington, DC)
[43] Byfleet C R, Carrington A and Russell D K 1971 Mol. Phys. 20 271
[44] Johns J W C and Ramsay D A 1961 Can. J. Phys. 39 210
[45] Friedl R R, Brune W H and Anderson J G 1983 J. Chem. Phys. 79 4227
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[6] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[7] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[8] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[9] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[10] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[11] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[12] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[13] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[14] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[15] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
No Suggested Reading articles found!