Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030303    DOI: 10.1088/1674-1056/abc2bc
GENERAL Prev   Next  

Majorana stellar representation for mixed-spin (s, 1/2) systems

Yu-Guo Su(苏玉国)1, Fei Yao(姚飞)1, Hong-Bin Liang(梁宏宾)1, Yan-Ming Che(车彦明)1, Li-Bin Fu(傅立斌)2, and Xiao-Guang Wang(王晓光)1,
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China; 2 National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  By describing the evolution of a quantum state with the trajectories of the Majorana stars on a Bloch sphere, Majorana's stellar representation provides an intuitive geometric perspective to comprehend the quantum system with high-dimensional Hilbert space. However, the representation of a two-spin coupling system on a Bloch sphere has not been solved satisfactorily yet. Here, a practical method is presented to resolve the problem for the mixed-spin (s, 1/2) system and describe the entanglement of the system. The system can be decomposed into two spins: spin-(s+1/2) and spin-(s-1/2) at the coupling bases, which can be regarded as independent spins. Besides, any pure state may be written as a superposition of two orthonormal states with one spin-(s+1/2) state and the other spin-(s-1/2) state. Thus, the whole initial state can be regarded as a state of a pseudo spin-1/2. In this way, the mixed spin decomposes into three spins. Therefore, the state can be represented by (2s+1)+(2s-1)+1=4s+1 sets of stars on a Bloch sphere. Finally, some examples are given to show symmetric patterns on the Bloch sphere and unveil the properties of the high-spin system by analyzing the trajectories of the Majorana stars on the Bloch sphere.
Keywords:  Majorana's stellar representation      Bloch sphere      high-dimensional projective Hilbert space      mixed-spin  
Received:  13 June 2020      Revised:  25 September 2020      Accepted manuscript online:  20 October 2020
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  02.40.Dr (Euclidean and projective geometries)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), the National Natural Science Foundation of China (Grant No. 11875231), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018FZA3005).
Corresponding Authors:  Corresponding author. E-mail: xgwang1208@zju.edu.cn   

Cite this article: 

Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光) Majorana stellar representation for mixed-spin (s, 1/2) systems 2021 Chin. Phys. B 30 030303

1 Bloch F and Rabi I I 1945 Rev. Mod. Phys. 17 237
2 Niu Q 2012 Physics 5 65
3 Biedenharn L C, Louck J D,Carruthers P A1981 Angular Momentum in Quantum Physics: Theory and Application (Academic Press: New York) p. 269
4 Majorana E 1932 Il Nuovo Cimento 9 43
5 M\"akel\"a H and Messina A 2010 Phys. Rev. A 81 012326
6 M\"akel\"a H and Messina A 2010 Phys. Scr. 2010 014054
7 Ganczarek W, Ku\'s M and \.Zyczkowski K K 2012 Phys. Rev. A 85 032314
8 Ribeiro P and Mosseri R 2011 Phys. Rev. Lett. 106 180502
9 Markham D J H 2011 Phys. Rev. A 83 042332
10 Mandilara A, Coudreau T, Keller A and Milman P 2014 Phys. Rev. A 90 050302
11 Guo W M and Qin L R 2018 Chin. Phys. B 27 110302
12 Yin S Y, Liu Q X, Song J, Xu X X, Zhou K Y and Liu S T 2017 Chin. Phys. B 26 100501
13 Ribeiro P, Vidal J and Mosseri R 2007 Phys. Rev. Lett. 99 050402
14 Ribeiro P, Vidal J and Mosseri R 2008 Phys. Rev. E 78 021106
15 Barnett R, Turner A and Demler E 2006 Phys. Rev. Lett. 97 180412
16 Barnett R, Turner A and Demler E 2007 Phys. Rev. A 76 013605
17 Yang C, Guo H, Fu L B and Chen S 2015 Phys. Rev. B 91 125132
18 Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
19 Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
20 Lian B, Ho T L and Zhai H 2012 Phys. Rev. A 85 051606
21 Cui X, Lian B, Ho T L, Lev B L and Zhai H 2013 Phys. Rev. A 88 011601
22 Fang J, Han D M, Liu H, Liu H D and Zheng T Y 2017 Acta Phys. Sin. 66 160302 (in Chinese)
23 Bruno P 2012 Phys. Rev. Lett. 108 240402
24 Liu H D and Fu L B 2014 Phys. Rev. Lett. 113 240403
25 Niu P B, Shi Y L, Sun Z and Nie Y H 2015 Chin. Phys. B 24 127309
26 Bouchard F, dela Hoz P, Bj\"ork G, Boyd R W, Grassl M, Hradil Z, Karimi E, Klimov A B, Leuchs G, \vReh\'a\vcek J and S\'anchez-Soto L L 2017 Optica 4 1429
27 Goldberg A Z and James D F V 2018 Phys. Rev. A 98 032113
28 Goldberg A Z and James D F V 2017 Phys. Rev. A 96 053859
29 Berry M V 1984 Proc. R. Soc. Lond. A 392 45
30 Chru\'sci\'nski D and Jamio\lkowski A2004 Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics(Boston: Springer) p. 79
31 Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Berlin: Springer-Verlag) p. 14
32 Simon B 1983 Phys. Rev. Lett. 51 2167
33 Hannay J H 1998 J. Phys. A: Math. Gen. 31 L53
34 Tamate S, Ogawa K and Kitano M 2011 Phys. Rev. A 84 052114
35 Ogawa K, Tamate S, Kobayashi H, Nakanishi T and Kitano M 2015 Phys. Rev. A 91 062118
36 Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
37 Miyake A 2003 Phys. Rev. A 67 012108
38 D\"ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
39 Ac\'ín A, Bru\ss D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401
40 Liu H D and Fu L B 2016 Phys. Rev. A 94 022123
41 Aulbach M, Markham D and Murao M 2010 New J. Phys. 12 073025
42 Wang Z and Markham D 2012 Phys. Rev. Lett. 108 210407
43 Wang Z and Markham D 2013 Phys. Rev. A 87 012104
44 Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L and Solano E 2009 Phys. Rev. Lett. 103 070503
45 Mathonet P, Krins S, Godefroid M, Lamata L, Solano E and Bastin T 2010 Phys. Rev. A 81 052315
46 Ribeiro P and Mosseri R 2011 Phys. Rev. Lett. 106 180502
47 Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
48 Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
49 Su W P and Schrieffer J R 1981 Phys. Rev. Lett. 46 738
50 Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 077002
51 Delplace P, Ullmo D and Montambaux G 2011 Phys. Rev. B 84 195452
52 Shen S Q2012 Topological Insulators: Dirac Equation in Condensed Matters (Berlin: Springer) p. 75
53 Zak J 1989 Phys. Rev. Lett. 62 2747
54 Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
55 Atala M, Aidelsburger M, Barreiro M T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
56 Liu H D, Fu L B and Wang X 2017 Commun. Theor. Phys. 67 611
57 Yao F, Li D, Liu H, Fu L and Wang X 2017 Sci. Rep. 7 15558
58 Brody D C and Hughston L P 1998 Proc. R. Soc. London A 454 2445
59 Brody D C and Hughston L P 2001 J. Geom. Phys. 38 19
60 Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
61 Ahmadi M, Jennings D and Rudolph T 2010 Phys. Rev. A 82 032320
62 Fontana P R 1962 Phys. Rev. 125 1597
63 Raedt B De and Raedt H De 1983 Phys. Rev. Lett. 50 1926
64 Haaker S M, Bais F A and Schoutens K 2014 Phys. Rev. A 89 032105
65 Bj\"ork G, Grassl M, dela Hoz P, Leuchs G and S\'anchez-Soto L L 2015 Phys. Scr. 90 108008
[1] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[2] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[3] Rotation of Bloch sphere induced by Lamb shift in open two-level systems
Wang Guo-You (王国友), Tang Ning (唐宁), Liu Ying (刘颖), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(5): 050302.
No Suggested Reading articles found!