|
|
Majorana stellar representation for mixed-spin (s, 1/2) systems |
Yu-Guo Su(苏玉国)1, Fei Yao(姚飞)1, Hong-Bin Liang(梁宏宾)1, Yan-Ming Che(车彦明)1, Li-Bin Fu(傅立斌)2, and Xiao-Guang Wang(王晓光)1,† |
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China; 2 National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract By describing the evolution of a quantum state with the trajectories of the Majorana stars on a Bloch sphere, Majorana's stellar representation provides an intuitive geometric perspective to comprehend the quantum system with high-dimensional Hilbert space. However, the representation of a two-spin coupling system on a Bloch sphere has not been solved satisfactorily yet. Here, a practical method is presented to resolve the problem for the mixed-spin (s, 1/2) system and describe the entanglement of the system. The system can be decomposed into two spins: spin-(s+1/2) and spin-(s-1/2) at the coupling bases, which can be regarded as independent spins. Besides, any pure state may be written as a superposition of two orthonormal states with one spin-(s+1/2) state and the other spin-(s-1/2) state. Thus, the whole initial state can be regarded as a state of a pseudo spin-1/2. In this way, the mixed spin decomposes into three spins. Therefore, the state can be represented by (2s+1)+(2s-1)+1=4s+1 sets of stars on a Bloch sphere. Finally, some examples are given to show symmetric patterns on the Bloch sphere and unveil the properties of the high-spin system by analyzing the trajectories of the Majorana stars on the Bloch sphere.
|
Received: 13 June 2020
Revised: 25 September 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
02.40.Dr
|
(Euclidean and projective geometries)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304202 and 2017YFA0205700), the National Natural Science Foundation of China (Grant No. 11875231), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018FZA3005). |
Corresponding Authors:
†Corresponding author. E-mail: xgwang1208@zju.edu.cn
|
Cite this article:
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光) Majorana stellar representation for mixed-spin (s, 1/2) systems 2021 Chin. Phys. B 30 030303
|
1 Bloch F and Rabi I I 1945 Rev. Mod. Phys. 17 237 2 Niu Q 2012 Physics 5 65 3 Biedenharn L C, Louck J D,Carruthers P A1981 Angular Momentum in Quantum Physics: Theory and Application (Academic Press: New York) p. 269 4 Majorana E 1932 Il Nuovo Cimento 9 43 5 M\"akel\"a H and Messina A 2010 Phys. Rev. A 81 012326 6 M\"akel\"a H and Messina A 2010 Phys. Scr. 2010 014054 7 Ganczarek W, Ku\'s M and \.Zyczkowski K K 2012 Phys. Rev. A 85 032314 8 Ribeiro P and Mosseri R 2011 Phys. Rev. Lett. 106 180502 9 Markham D J H 2011 Phys. Rev. A 83 042332 10 Mandilara A, Coudreau T, Keller A and Milman P 2014 Phys. Rev. A 90 050302 11 Guo W M and Qin L R 2018 Chin. Phys. B 27 110302 12 Yin S Y, Liu Q X, Song J, Xu X X, Zhou K Y and Liu S T 2017 Chin. Phys. B 26 100501 13 Ribeiro P, Vidal J and Mosseri R 2007 Phys. Rev. Lett. 99 050402 14 Ribeiro P, Vidal J and Mosseri R 2008 Phys. Rev. E 78 021106 15 Barnett R, Turner A and Demler E 2006 Phys. Rev. Lett. 97 180412 16 Barnett R, Turner A and Demler E 2007 Phys. Rev. A 76 013605 17 Yang C, Guo H, Fu L B and Chen S 2015 Phys. Rev. B 91 125132 18 Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191 19 Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253 20 Lian B, Ho T L and Zhai H 2012 Phys. Rev. A 85 051606 21 Cui X, Lian B, Ho T L, Lev B L and Zhai H 2013 Phys. Rev. A 88 011601 22 Fang J, Han D M, Liu H, Liu H D and Zheng T Y 2017 Acta Phys. Sin. 66 160302 (in Chinese) 23 Bruno P 2012 Phys. Rev. Lett. 108 240402 24 Liu H D and Fu L B 2014 Phys. Rev. Lett. 113 240403 25 Niu P B, Shi Y L, Sun Z and Nie Y H 2015 Chin. Phys. B 24 127309 26 Bouchard F, dela Hoz P, Bj\"ork G, Boyd R W, Grassl M, Hradil Z, Karimi E, Klimov A B, Leuchs G, \vReh\'a\vcek J and S\'anchez-Soto L L 2017 Optica 4 1429 27 Goldberg A Z and James D F V 2018 Phys. Rev. A 98 032113 28 Goldberg A Z and James D F V 2017 Phys. Rev. A 96 053859 29 Berry M V 1984 Proc. R. Soc. Lond. A 392 45 30 Chru\'sci\'nski D and Jamio\lkowski A2004 Geometric Phases in Classical and Quantum Mechanics, Progress in Mathematical Physics(Boston: Springer) p. 79 31 Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Berlin: Springer-Verlag) p. 14 32 Simon B 1983 Phys. Rev. Lett. 51 2167 33 Hannay J H 1998 J. Phys. A: Math. Gen. 31 L53 34 Tamate S, Ogawa K and Kitano M 2011 Phys. Rev. A 84 052114 35 Ogawa K, Tamate S, Kobayashi H, Nakanishi T and Kitano M 2015 Phys. Rev. A 91 062118 36 Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306 37 Miyake A 2003 Phys. Rev. A 67 012108 38 D\"ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 39 Ac\'ín A, Bru\ss D, Lewenstein M and Sanpera A 2001 Phys. Rev. Lett. 87 040401 40 Liu H D and Fu L B 2016 Phys. Rev. A 94 022123 41 Aulbach M, Markham D and Murao M 2010 New J. Phys. 12 073025 42 Wang Z and Markham D 2012 Phys. Rev. Lett. 108 210407 43 Wang Z and Markham D 2013 Phys. Rev. A 87 012104 44 Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L and Solano E 2009 Phys. Rev. Lett. 103 070503 45 Mathonet P, Krins S, Godefroid M, Lamata L, Solano E and Bastin T 2010 Phys. Rev. A 81 052315 46 Ribeiro P and Mosseri R 2011 Phys. Rev. Lett. 106 180502 47 Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 48 Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099 49 Su W P and Schrieffer J R 1981 Phys. Rev. Lett. 46 738 50 Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 077002 51 Delplace P, Ullmo D and Montambaux G 2011 Phys. Rev. B 84 195452 52 Shen S Q2012 Topological Insulators: Dirac Equation in Condensed Matters (Berlin: Springer) p. 75 53 Zak J 1989 Phys. Rev. Lett. 62 2747 54 Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 55 Atala M, Aidelsburger M, Barreiro M T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 56 Liu H D, Fu L B and Wang X 2017 Commun. Theor. Phys. 67 611 57 Yao F, Li D, Liu H, Fu L and Wang X 2017 Sci. Rep. 7 15558 58 Brody D C and Hughston L P 1998 Proc. R. Soc. London A 454 2445 59 Brody D C and Hughston L P 2001 J. Geom. Phys. 38 19 60 Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604 61 Ahmadi M, Jennings D and Rudolph T 2010 Phys. Rev. A 82 032320 62 Fontana P R 1962 Phys. Rev. 125 1597 63 Raedt B De and Raedt H De 1983 Phys. Rev. Lett. 50 1926 64 Haaker S M, Bais F A and Schoutens K 2014 Phys. Rev. A 89 032105 65 Bj\"ork G, Grassl M, dela Hoz P, Leuchs G and S\'anchez-Soto L L 2015 Phys. Scr. 90 108008 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|