CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy |
Jia Liu(刘佳)1, Ke-Man Li(李科曼)1, Feng Chi(迟锋)2, Zhen-Guo Fu(付振国)3, Yue-Fei Hou(侯跃飞)3, Zhigang Wang(王志刚)3, Ping Zhang(张平)3 |
1 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2 School of Electronic and Information Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China; 3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract We propose an interferometer composing of a scanning tunneling microscope (STM), double quantum dots (DQDs), and a semiconductor nanowire carrying Majorana bound states (MBSs) at its ends induced by the proximity effect of an s-wave superconductor, to probe the existence of the MBSs in the dots. Our results show that when the energy levels of DQDs are aligned to the energy of MBSs, the zero-energy spectral functions of DQDs are always equal to 1/2, which indicates the formation of the MBSs in the DQDs and is also responsible for the zero-bias conductance peak. Our findings suggest that the spectral functions of the DQDs may be an excellent and convenient quantity for detecting the formation and stability of the spatially separated MBSs in quantum dots.
|
Received: 08 January 2020
Revised: 07 April 2020
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564029 and 11675023), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2017MS0112), the Science Foundation for Excellent Youth Scholors of Inner Mongolia University of Science and Technology, China (Grant No. 2017YQL06), the Initial Project of UEST of China, Zhongshan Institute (Grant No. 415YKQ02), the Science and Technology Bureau of Zhongshan City, China (Grant Nos. 2017B1116 and 2017B1016), and the Innovation Team of Zhongshan City, China (Grant No. 180809162197886). |
Corresponding Authors:
Ping Zhang
E-mail: fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn
|
Cite this article:
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平) Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy 2020 Chin. Phys. B 29 077302
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Kitaev A Y 2001 Phys. Usp. 44 131
|
[4] |
Fu L and Kane C 2008 Phys. Rev. Lett. 100 096407
|
[5] |
Alicea J 2012 Rep. Prog. Phys. 75 076501
|
[6] |
Klinovaja J and Loss D 2012 Phys. Rev. B 86 085408
|
[7] |
Yin J X, Wu Z, Wang J H et al. 2015 Nat. Phys. 11 543
|
[8] |
Hu H, Zhang F and Zhang C 2018 Phys. Rev. Lett. 121 185302
|
[9] |
Hsu C H, Stano P, Klinovaja J and Loss D 2018 Phys. Rev. Lett. 121 196801
|
[10] |
Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
|
[11] |
Zhou Y F, Hou Z and Sun Q F 2019 Phys. Rev. B 99 195137
|
[12] |
Lutchyn R, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[13] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[14] |
Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård, Krogstrup P and Marcus C M 2016 Nature 531 206
|
[15] |
Deng M T, Vaitiek_enas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557
|
[16] |
Deng M T, Vaitieküenas S, Prada E, San-Jose P, Nygård J, Krogstrup P, Aguado R and Marcus C M 2018 Phys. Rev. B 98 085125
|
[17] |
Hays M, de Lange G, Serniak K, van Woerkom D J, Bouman D, Krogstrup P, Nygård J, Geresdi A and Devoret M H 2018 Phys. Rev. Lett. 121 047001
|
[18] |
Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
|
[19] |
Shang E C, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
|
[20] |
Jiang Z T and Zhong C C 2016 Chin. Phys. B 25 067302
|
[21] |
Moore C, Stanescu T D and Tewari S 2018 Phys. Rev. B 97 165302
|
[22] |
Li J, Yu T, Lin H Q and You J Q 2015 Sci. Rep. 4 4930
|
[23] |
Rubbert S and Akhmerov A R 2016 Phys. Rev. B 94 115430
|
[24] |
Hell M, Flensberg K and Leijnse M 2018 Phys. Rev. B 97 161401(R)
|
[25] |
Schuray A, Weithofer L and Recher P 2017 Phys. Rev. B 96 085417
|
[26] |
Liu C X, Sau J D, Stanescu T D and Das Sarma S 2017 Phys. Rev. B 96 075161
|
[27] |
Li Y, Li S X, Lidag H O, Deng G W, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 76105
|
[28] |
Zhang H et al. 2018 Nature 556 74
|
[29] |
Li X Q and Xu L 2020 Phys. Rev. B 101 205401
|
[30] |
Zhu S, Kong L, Cao L et al. 2020 Science 367 189
|
[31] |
Liu C X, Cole W S and Sau J D 2019 Phys. Rev. Lett. 122 117001
|
[32] |
Feng J J, Huang Z, Wang Z and Niu Q 2018 Phys. Rev. B 98 134515
|
[33] |
Virtanen P, Bergeret F S, Strambini E, Giazotto F and Braggio A 2018 Phys. Rev. B 98 020501(R)
|
[34] |
Liu D T, Shabani J and Mitra A 2019 Phys. Rev. B 99 094303
|
[35] |
Ricco L S, de Souza M, Figueira M S, Shelykh I A and Seridonio A C 2019 Phys. Rev. B 99 155159
|
[36] |
Cifuentes J D and da Silva L G G V 2019 Phys. Rev. B 100 085429
|
[37] |
Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
|
[38] |
Ramos-Andrade J P, Orellana P A and Vernek E 2020 Phys. Rev. B 101 115403
|
[39] |
Binnig G, Rohrer H, Gerber C et al. 1982 Phys. Rev. Lett. 49 57
|
[40] |
Binnig G and Rohrer H 1987 Rev. Mod. Phys. 59 615
|
[41] |
Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
|
[42] |
You S F et al. 2019 Acta Phys. Sin. 68 016802 (in Chinese)
|
[43] |
Sun H H et al. 2016 Phys. Rev. Lett. 116 257003
|
[44] |
Jeon S, Xie Y, Li J, Wang Z, Bernevig B A and Yazdani A 2017 Science 358 772
|
[45] |
Wang D, Kong L, Fan P et al. 2018 Science 362 333
|
[46] |
Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
|
[47] |
Kong L, Zhu S, Papaj M et al. 2019 Nat. Phys. 15 1181
|
[48] |
Jäck B, Xie Y, Li, J, Jeon S, Bernevig B A and Yazdani A 2019 Science 364 1255
|
[49] |
Chen C, Jiang K, Zhang Y, Liu C, Liu Y, Wang Z and Wang J 2020 Nat. Phys. 16 536
|
[50] |
Pan Y, Yang J, Erwin S C, Kanisawa K and Fölsch S 2015 Phys. Rev. Lett. 115 076803
|
[51] |
Chevallier D and Klinovaja J 2016 Phys. Rev. B 94 035417
|
[52] |
Devillard P, Chevallier D and Albert M 2017 Phys. Rev. B 96 115413
|
[53] |
Górski G, Barański J, Weymann I and Domański T 2018 Sci. Rep. 8 15717
|
[54] |
Wang J 2018 Phys. Rev. B 98 024519
|
[55] |
Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308(R)
|
[56] |
Ricco L S, Campo Jr. V L, Shelykh I A and Seridonio A C 2018 Phys. Rev. B 98 075142
|
[57] |
Sun Q F, Xing Y X and Shen S Q 2008 Phys. Rev. B 77 195313
|
[58] |
Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|