Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077301    DOI: 10.1088/1674-1056/ab8db3
RAPID COMMUNICATION Prev   Next  

Epitaxial fabrication of monolayer copper arsenide on Cu(111)

Shuai Zhang(张帅)1, Yang Song(宋洋)1, Jin Mei Li(李金梅)2, Zhenyu Wang(王振宇)1, Chen Liu(刘晨)2, Jia-Ou Wang(王嘉鸥)2, Lei Gao(高蕾)3, Jian-Chen Lu(卢建臣)3, Yu Yang Zhang(张余洋)1,4, Xiao Lin(林晓)1,4, Jinbo Pan(潘金波)1, Shi Xuan Du(杜世萱)1,4, Hong-Jun Gao(高鸿钧)1,4
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Kunming University of Science and Technology, Kunming 650500, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We report the epitaxial growth of monolayer copper arsenide (CuAs) with a honeycomb lattice on Cu(111) by molecular beam epitaxy (MBE). Scanning tunneling microscopy (STM), low energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) verify the √3×√3 superlattice of monolayer CuAs on Cu(111) substrate. Angle-resolved photoemission spectroscopy (ARPES) measurements together with DFT calculations demonstrate the electronic band structures of monolayer CuAs and reveal its metallic nature. Further calculations show that charge transfer from Cu(111) substrate to monolayer CuAs lifts the Fermi level and tunes the band structure of the monolayer CuAs. This high-quality epitaxial monolayer CuAs with potential tunable band gap holds promise on the applications in nano-electronic devices.
Keywords:  copper arsenide (CuAs)      band structure      scanning tunneling microscopy (STM)  
Received:  17 April 2020      Revised:  24 April 2020      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61888102, 11604373, 61622116, and 51872284), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the University of Chinese Academy of Sciences. A portion of the research was performed in the CAS Key Laboratory of Vacuum Physics.
Corresponding Authors:  Xiao Lin, Jinbo Pan, Hong-Jun Gao     E-mail:  xlin@ucas.ac.cn;jbpan@iphy.ac.cn;jbpan@iphy.ac.cn

Cite this article: 

Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Epitaxial fabrication of monolayer copper arsenide on Cu(111) 2020 Chin. Phys. B 29 077301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[5] Das S, Kim M, Lee J W and Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231
[6] Liu T, Tong L, Huang X and Ye L 2019 Chin. Phys. B 28 017302
[7] Lu N, Wang L, Li L and Liu M 2017 Chin. Phys. B 26 036804
[8] She Y C, Wei Z, Luo K W, Li Y, Zhang Y and Zhang W X 2018 Chin. Phys. B 27 060306
[9] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[10] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[11] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Zhao A, Xu Y, Duan W, Zhang S C, Wang B and Hou J G 2018 Nat. Mater. 17 1081
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[15] Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
[16] Ji F, Ren X, Zheng X, Liu Y, Pang L, Jiang J and Liu S 2016 Nanoscale 8 8696
[17] Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J and Wang L 2014 Adv. Mater. 26 7019
[18] Ma Y, Liu B, Zhang A, Chen L, Fathi M, Shen C, Abbas A N, Ge M, Mecklenburg M and Zhou C 2015 ACS Nano 9 7383
[19] Sokolikova M S, Sherrell P C, Palczynski P, Bemmer V L and Mattevi C 2019 Nat. Commun. 10 712
[20] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[21] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[22] Qian K, Gao L, Chen X, Li H, Zhang S, Zhang X L, Zhu S, Yan J, Bao D, Cao L, Shi J A, Lu J, Liu C, Wang J, Qian T, Ding H, Gu L, Zhou W, Zhang Y Y, Lin X, Du S, Ouyang M, Pantelides S T and Gao H J 2020 Adv. Mater. 32 1908314
[23] Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717
[24] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[25] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[26] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[29] Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206
[30] Powell C J 2012 J. Electron. Spectrosc. Relat. Phenom. 185 1
[31] Ghosh S C, Biesinger M C, LaPierre R R and Kruse P 2007 J. Appl. Phys. 101 114322
[32] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[33] Tusche C, Meyerheim H L and Kirschner J 2007 Phys. Rev. Lett. 99 026102
[34] Jiang Y, Sun Y Y, Chen M, Wang Y, Li Z, Song C, He K, Wang L, Chen X, Xue Q K, Ma X and Zhang S B 2012 Phys. Rev. Lett. 108 066809
[35] Gao L, Sun J T, Sethi G, Zhang Y Y, Du S and Liu F 2019 Nanoscale 11 22743
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[8] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[9] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[10] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[11] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[12] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[13] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[14] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[15] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
No Suggested Reading articles found!