Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077302    DOI: 10.1088/1674-1056/ab8889
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy

Jia Liu(刘佳)1, Ke-Man Li(李科曼)1, Feng Chi(迟锋)2, Zhen-Guo Fu(付振国)3, Yue-Fei Hou(侯跃飞)3, Zhigang Wang(王志刚)3, Ping Zhang(张平)3
1 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China;
2 School of Electronic and Information Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  We propose an interferometer composing of a scanning tunneling microscope (STM), double quantum dots (DQDs), and a semiconductor nanowire carrying Majorana bound states (MBSs) at its ends induced by the proximity effect of an s-wave superconductor, to probe the existence of the MBSs in the dots. Our results show that when the energy levels of DQDs are aligned to the energy of MBSs, the zero-energy spectral functions of DQDs are always equal to 1/2, which indicates the formation of the MBSs in the DQDs and is also responsible for the zero-bias conductance peak. Our findings suggest that the spectral functions of the DQDs may be an excellent and convenient quantity for detecting the formation and stability of the spatially separated MBSs in quantum dots.
Keywords:  quantum dot      scanning tunneling microscopy      Majorana bound states  
Received:  08 January 2020      Revised:  07 April 2020      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564029 and 11675023), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2017MS0112), the Science Foundation for Excellent Youth Scholors of Inner Mongolia University of Science and Technology, China (Grant No. 2017YQL06), the Initial Project of UEST of China, Zhongshan Institute (Grant No. 415YKQ02), the Science and Technology Bureau of Zhongshan City, China (Grant Nos. 2017B1116 and 2017B1016), and the Innovation Team of Zhongshan City, China (Grant No. 180809162197886).
Corresponding Authors:  Ping Zhang     E-mail:  fu_zhenguo@iapcm.ac.cn;zhang_ping@iapcm.ac.cn

Cite this article: 

Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平) Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy 2020 Chin. Phys. B 29 077302

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Kitaev A Y 2001 Phys. Usp. 44 131
[4] Fu L and Kane C 2008 Phys. Rev. Lett. 100 096407
[5] Alicea J 2012 Rep. Prog. Phys. 75 076501
[6] Klinovaja J and Loss D 2012 Phys. Rev. B 86 085408
[7] Yin J X, Wu Z, Wang J H et al. 2015 Nat. Phys. 11 543
[8] Hu H, Zhang F and Zhang C 2018 Phys. Rev. Lett. 121 185302
[9] Hsu C H, Stano P, Klinovaja J and Loss D 2018 Phys. Rev. Lett. 121 196801
[10] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[11] Zhou Y F, Hou Z and Sun Q F 2019 Phys. Rev. B 99 195137
[12] Lutchyn R, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[13] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[14] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård, Krogstrup P and Marcus C M 2016 Nature 531 206
[15] Deng M T, Vaitiek_enas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557
[16] Deng M T, Vaitieküenas S, Prada E, San-Jose P, Nygård J, Krogstrup P, Aguado R and Marcus C M 2018 Phys. Rev. B 98 085125
[17] Hays M, de Lange G, Serniak K, van Woerkom D J, Bouman D, Krogstrup P, Nygård J, Geresdi A and Devoret M H 2018 Phys. Rev. Lett. 121 047001
[18] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[19] Shang E C, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[20] Jiang Z T and Zhong C C 2016 Chin. Phys. B 25 067302
[21] Moore C, Stanescu T D and Tewari S 2018 Phys. Rev. B 97 165302
[22] Li J, Yu T, Lin H Q and You J Q 2015 Sci. Rep. 4 4930
[23] Rubbert S and Akhmerov A R 2016 Phys. Rev. B 94 115430
[24] Hell M, Flensberg K and Leijnse M 2018 Phys. Rev. B 97 161401(R)
[25] Schuray A, Weithofer L and Recher P 2017 Phys. Rev. B 96 085417
[26] Liu C X, Sau J D, Stanescu T D and Das Sarma S 2017 Phys. Rev. B 96 075161
[27] Li Y, Li S X, Lidag H O, Deng G W, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 76105
[28] Zhang H et al. 2018 Nature 556 74
[29] Li X Q and Xu L 2020 Phys. Rev. B 101 205401
[30] Zhu S, Kong L, Cao L et al. 2020 Science 367 189
[31] Liu C X, Cole W S and Sau J D 2019 Phys. Rev. Lett. 122 117001
[32] Feng J J, Huang Z, Wang Z and Niu Q 2018 Phys. Rev. B 98 134515
[33] Virtanen P, Bergeret F S, Strambini E, Giazotto F and Braggio A 2018 Phys. Rev. B 98 020501(R)
[34] Liu D T, Shabani J and Mitra A 2019 Phys. Rev. B 99 094303
[35] Ricco L S, de Souza M, Figueira M S, Shelykh I A and Seridonio A C 2019 Phys. Rev. B 99 155159
[36] Cifuentes J D and da Silva L G G V 2019 Phys. Rev. B 100 085429
[37] Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
[38] Ramos-Andrade J P, Orellana P A and Vernek E 2020 Phys. Rev. B 101 115403
[39] Binnig G, Rohrer H, Gerber C et al. 1982 Phys. Rev. Lett. 49 57
[40] Binnig G and Rohrer H 1987 Rev. Mod. Phys. 59 615
[41] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[42] You S F et al. 2019 Acta Phys. Sin. 68 016802 (in Chinese)
[43] Sun H H et al. 2016 Phys. Rev. Lett. 116 257003
[44] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A and Yazdani A 2017 Science 358 772
[45] Wang D, Kong L, Fan P et al. 2018 Science 362 333
[46] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[47] Kong L, Zhu S, Papaj M et al. 2019 Nat. Phys. 15 1181
[48] Jäck B, Xie Y, Li, J, Jeon S, Bernevig B A and Yazdani A 2019 Science 364 1255
[49] Chen C, Jiang K, Zhang Y, Liu C, Liu Y, Wang Z and Wang J 2020 Nat. Phys. 16 536
[50] Pan Y, Yang J, Erwin S C, Kanisawa K and Fölsch S 2015 Phys. Rev. Lett. 115 076803
[51] Chevallier D and Klinovaja J 2016 Phys. Rev. B 94 035417
[52] Devillard P, Chevallier D and Albert M 2017 Phys. Rev. B 96 115413
[53] Górski G, Barański J, Weymann I and Domański T 2018 Sci. Rep. 8 15717
[54] Wang J 2018 Phys. Rev. B 98 024519
[55] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308(R)
[56] Ricco L S, Campo Jr. V L, Shelykh I A and Seridonio A C 2018 Phys. Rev. B 98 075142
[57] Sun Q F, Xing Y X and Shen S Q 2008 Phys. Rev. B 77 195313
[58] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!