Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 086104    DOI: 10.1088/1674-1056/28/8/086104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations

Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源)
School of Information Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  Heterostructures (HSs) have attracted significant attention because of their interlayer van der Waals interactions. The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory. The results indicate that the direct band gap (1.95 eV) of the GaN-MoS2 HS is lower than the individual band gaps of both the GaN layer (3.48 eV) and the MoS2 layer (2.03 eV) based on HSE06 hybrid functional calculations. Specifically, the GaN-MoS2 HS is a typical type-Ⅱ band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency. Under tensile or compressive strain, the direct band gap of the GaN-MoS2 HS undergoes redshifts. Additionally, the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5% or -5%. Therefore, the results reported above can be used to expand the application of GaN-MoS2 HSs to photovoltaic cells and photocatalysts.
Keywords:  GaN-MoS2 heterostructure      electronic structures      optical properties      first-principles calculations  
Received:  15 April 2019      Revised:  31 May 2019      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB390), and the Doctoral Fund Project of Hubei Minzu University, China (Grant No. MY2017B015).
Corresponding Authors:  Dahua Ren     E-mail:  rdh_perfect@163.com

Cite this article: 

Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源) Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations 2019 Chin. Phys. B 28 086104

[1] Geim A and Grigorieva I 2013 Nature 499 419
[2] Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584
[3] Selvaraj R, Kalimuthu K R and Kalimuthu V 2019 Mater. Lett. 245 183
[4] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. USA 111 6198
[5] Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
[6] Zhang X W, He D W, He J Q, Zhao S Q, Hao S C, Wang Y S and Yi L X 2017 Chin. Phys. B 26 097202
[7] Hou M C, Xie G and Sheng K 2019 Chin. Phys. B 28 037302
[8] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2016 Nat. Nanotechnol. 11 42
[9] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[10] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[11] Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H and Cai M Q 2017 J. Phys. D: Apll. Phys. 50 465101
[12] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[13] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L and Cai M Q 2018 Nanoscale 10 8677
[14] Wang H, Yuan H, Sae S H, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664
[15] Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[16] Miwa J A, Dendzik M, Gronborg S S, Bianchi M, Lauritsen J V, Hofmann P and Ulstrup S 2015 ACS Nano 9 6502
[17] He Y M, Yang Y, Zhang Z H, Gong Y J, Zhou W, Hu Z L, Ye G L, Zhang X, Bianco E, Lei S D, Jin Z H, Zou X L, Yang Y C, Zhang Y, Xie E Q, Lou J, Yakobson B, Vajtai R, Li B and Ajayan P 2016 Nano Lett. 16 3314
[18] Dingle R, Sell D D, Stokowski S E and Ilegems M 1971 Phys. Rev. B 4 1211
[19] Al Balushi Z Y, Wang K, Ghosh R K, ViláR A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
[20] Sun M L, Chou J P, Ren Q Q, Zhao Y M, Yu J and Tang W C 2017 Appl. Phys. Lett. 110 173105
[21] Prete M S, Mosca Conte A, Gori P, Bechstedt F and Pulci O 2017 Appl. Phys. Lett. 110 012103
[22] Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
[23] Zhang H, Meng F S and Wu Y B 2017 Solid State Commun. 250 18
[24] Sanders N, Bayerl D, Shi G, Mengle K A and Kioupakis E 2017 Nano Lett. 17 7345
[25] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P and Steiner M 2013 Nano Lett. 13 1416
[26] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[27] Perdew J P, Burke J P and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[29] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[30] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[31] Kohn W and Sham L 1965 Phys. Rev. 140 A1133
[32] Blochl P E 1994 Phys. Rev. B 50 17953
[33] Tsoi S, Dev P, Friedman A L, Stine R, Robinson J R, Reinecke T L and Sheehan P E 2014 ACS Nano 8 12410
[34] Lee L, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[35] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[36] Adler S L 1962 Phys. Rev. 126 413
[37] Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M and He J 2013 Nanoscale 5 8326
[38] Lo S S, Mirkovic T, Chuang C H, Burda C and Scholes G D 2011 Adv. Mater. 23 180
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!