CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations |
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源) |
School of Information Engineering, Hubei Minzu University, Enshi 445000, China |
|
|
Abstract Heterostructures (HSs) have attracted significant attention because of their interlayer van der Waals interactions. The electronic structures and optical properties of stacked GaN-MoS2 HSs under strain have been explored in this work using density functional theory. The results indicate that the direct band gap (1.95 eV) of the GaN-MoS2 HS is lower than the individual band gaps of both the GaN layer (3.48 eV) and the MoS2 layer (2.03 eV) based on HSE06 hybrid functional calculations. Specifically, the GaN-MoS2 HS is a typical type-Ⅱ band HS semiconductor that provides an effective approach to enhance the charge separation efficiency for improved photocatalytic degradation activity and water splitting efficiency. Under tensile or compressive strain, the direct band gap of the GaN-MoS2 HS undergoes redshifts. Additionally, the GaN-MoS2 HS maintains its direct band gap semiconductor behavior even when the tensile or compressive strain reaches 5% or -5%. Therefore, the results reported above can be used to expand the application of GaN-MoS2 HSs to photovoltaic cells and photocatalysts.
|
Received: 15 April 2019
Revised: 31 May 2019
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB390), and the Doctoral Fund Project of Hubei Minzu University, China (Grant No. MY2017B015). |
Corresponding Authors:
Dahua Ren
E-mail: rdh_perfect@163.com
|
Cite this article:
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源) Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations 2019 Chin. Phys. B 28 086104
|
[1] |
Geim A and Grigorieva I 2013 Nature 499 419
|
[2] |
Chhowalla M, Liu Z and Zhang H 2015 Chem. Soc. Rev. 44 2584
|
[3] |
Selvaraj R, Kalimuthu K R and Kalimuthu V 2019 Mater. Lett. 245 183
|
[4] |
Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F and Unal A A 2014 Proc. Natl. Acad. Sci. USA 111 6198
|
[5] |
Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
|
[6] |
Zhang X W, He D W, He J Q, Zhao S Q, Hao S C, Wang Y S and Yi L X 2017 Chin. Phys. B 26 097202
|
[7] |
Hou M C, Xie G and Sheng K 2019 Chin. Phys. B 28 037302
|
[8] |
Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2016 Nat. Nanotechnol. 11 42
|
[9] |
Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
|
[10] |
Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
|
[11] |
Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H and Cai M Q 2017 J. Phys. D: Apll. Phys. 50 465101
|
[12] |
Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
|
[13] |
Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L and Cai M Q 2018 Nanoscale 10 8677
|
[14] |
Wang H, Yuan H, Sae S H, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664
|
[15] |
Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
|
[16] |
Miwa J A, Dendzik M, Gronborg S S, Bianchi M, Lauritsen J V, Hofmann P and Ulstrup S 2015 ACS Nano 9 6502
|
[17] |
He Y M, Yang Y, Zhang Z H, Gong Y J, Zhou W, Hu Z L, Ye G L, Zhang X, Bianco E, Lei S D, Jin Z H, Zou X L, Yang Y C, Zhang Y, Xie E Q, Lou J, Yakobson B, Vajtai R, Li B and Ajayan P 2016 Nano Lett. 16 3314
|
[18] |
Dingle R, Sell D D, Stokowski S E and Ilegems M 1971 Phys. Rev. B 4 1211
|
[19] |
Al Balushi Z Y, Wang K, Ghosh R K, ViláR A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
|
[20] |
Sun M L, Chou J P, Ren Q Q, Zhao Y M, Yu J and Tang W C 2017 Appl. Phys. Lett. 110 173105
|
[21] |
Prete M S, Mosca Conte A, Gori P, Bechstedt F and Pulci O 2017 Appl. Phys. Lett. 110 012103
|
[22] |
Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
|
[23] |
Zhang H, Meng F S and Wu Y B 2017 Solid State Commun. 250 18
|
[24] |
Sanders N, Bayerl D, Shi G, Mengle K A and Kioupakis E 2017 Nano Lett. 17 7345
|
[25] |
Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P and Steiner M 2013 Nano Lett. 13 1416
|
[26] |
Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
|
[27] |
Perdew J P, Burke J P and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[29] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[30] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[31] |
Kohn W and Sham L 1965 Phys. Rev. 140 A1133
|
[32] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[33] |
Tsoi S, Dev P, Friedman A L, Stine R, Robinson J R, Reinecke T L and Sheehan P E 2014 ACS Nano 8 12410
|
[34] |
Lee L, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[35] |
Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
|
[36] |
Adler S L 1962 Phys. Rev. 126 413
|
[37] |
Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M and He J 2013 Nanoscale 5 8326
|
[38] |
Lo S S, Mirkovic T, Chuang C H, Burda C and Scholes G D 2011 Adv. Mater. 23 180
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|