Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097501    DOI: 10.1088/1674-1056/26/9/097501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys

Ishfaq Ahmad Shah1, Najam ul Hassan1, Abdur Rauf2, Jun Liu(刘俊)1, Yuanyuan Gong(龚元元)1, Guizhou Xu(徐桂舟)1, Feng Xu(徐锋)1
1 Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

An investigation on the magnetostructural transformation and magnetocaloric properties of Ni48-xCo2Mn38+xSn12 (x=0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni48Co2Mn38Sn12 alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x=1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature, but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.

Keywords:  Ni-Co-Mn-Sn alloy      magnetostructural transformation      magnetocaloric effect      magnetic entropy change  
Received:  27 April 2017      Revised:  23 May 2017      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), Jiangsu Natural Science Foundation for Distinguished Young Scholars, China (Grant No. BK20140035), China Postdoctoral Science Foundation (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833 and BK20160829), Qing Lan Project of Jiangsu Province, China, Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and NMG-NJUST Joint Scholarship Program for Ishfaq Ahmad Shah (Student ID: 914116020118).

Corresponding Authors:  Feng Xu     E-mail:  xufeng@njust.edu.cn

Cite this article: 

Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋) Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys 2017 Chin. Phys. B 26 097501

[1] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[2] Guillou F, Porcari G, Yibole H, Van Dijk N and Bruck E 2014 Adv. Mater. 26 2671
[3] Lyubina J 2017 J. Phys. D: Appl. Phys. 50 053002
[4] Shah I A, Hassan N, Liu J, Gong Y Y, Zhou X G and Feng X 2017 Chin. Phys. B 26 017501
[5] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[6] Wada H, and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[7] Hu F, Shen B, Sun J, Wang G and Cheng Z 2002 Appl. Phys. Lett. 80 826
[8] Tagus O, Bruck E, Buschow K and Boer F D 2002 Nature 415 150
[9] Han Z D, Wang D H, Qian B, Feng J F, Jiang X F and Du Y W 2010 J. Appl. Phys. 49 010211
[10] Zhang Y, Liu J, Zheng Q, Zhang J, Xia W, Du J and Ya A 2014 Scr. Mater 75 26
[11] Quetz A, Koshkidko Y S, Titov I, Rodionov I, Pandey S, Aryal A, Ibarra-Gaytan P J, Prudnikov V, Granovsky A, Dubenko I, Samanta T, Cwik J, Llamazares J L S, Stadler S, Lahderanta E and Ali N 2016 J. Alloys Compd. 683 139
[12] Xuan H C, Han P D, Wang D H and Du Y W 2014 J. Alloys Compd. 582 369
[13] Varzaneh A G, Kameli P, Karimzadeh F, Aslibeiki B, Varvaro G and Salamati H 2014 J. Alloys Compd. 598 6
[14] Li Z, Xu K, Zhang Y L and Jing C 2015 J. Appl. Phys. 117 023902
[15] Ma S C, Shih C W, Liu J, Yuan J H, Lee S Y, Lee Y I, Chang H W and Chang W C 2015 Acta Mater. 90 292
[16] Xuan H C, Zheng Y X, Ma S C, Cao Q Q, Wang D H and Du Y W 2010 J. Appl. Phys. 108 103920
[17] Chen F H, Huang Q X, Jiang Z Y, Xuan H C, Zhang M G, Xu X H and Zhao J W 2016 Smart Mater. Struct. 25 6
[18] Zheng H, Wang W, Xue S, Zhai Q, Frenzel J and Luo Z 2013 Acta Mater 61 4648
[19] Huang L, Cong D Y, Suo H L and Wang Y D 2014 Appl. Phys. Lett. 104 132407
[20] Ma S C, Wang D H, Zhong Z C, Luo J M, Xu J L and Du Y W 2013 Appl. Phys. Lett. 102 032407
[21] Moya X, Narayan S K and Mathur N D 2014 Nat. Mater. 13 439
[22] Chen F, Tong Y X, Tian B, Li L, Zheng Y F and Liu Y 2013 J. Magn. Magn. Mater. 347 72
[23] Caron L, Ou Z Q, Nguyen T T, Cam-Thanh D T, Tegus O and Bruck E 2009 J. Magn. Magn. Mater. 321 3559
[24] Maziarz W, Czaja P, Szczerba M J, Dobrzynska L L, Czeppe T and Dutkiewicz J 2014 J. Alloys Compd. 615 S173
[25] Cong D Y, Roth S and Schultz L 2012 Acta Mater. 60 5335
[26] Srivastava V, Chen X and James R D 2010 Appl. Phys. Lett. 97 014101
[27] Bhatti K P, Khatib S E, Srivastava V, James R D and Leighton C 2012 Phys. Rev. B 85 134450
[28] Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y S 2013 Phys. Status Solidi A 210 2762
[29] Emre B, Bruno N M, Emre S Y and Karaman I 2014 Appl. Phys. Lett. 105 231910
[30] Luo H, Meng F, Jiang Q, Liu H, Liu E, Wu G and Wang Y 2010 Scr. Mater. 63 569
[31] Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K and Kanomata T 2010 Phys. Rev. Lett. 104 176401
[32] Zhong Z C, Ma S C, Wang D H and Du Y W 2012 J. Mater. Sci. Technol. 28 193
[33] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[34] Benford S M and Brown G V 1981 J. Appl. Phys. 52 2110
[35] Krenke T, Duman E, Acet M, Moya X, Manosa L and Planes A 2007 J. Appl. Phys. 102 033903
[36] Sharma V K, Chattopadhyay M K and Roy S B 2010 J. Phys. D: Appl. Phys. 43 225001
[37] Xuan H C, Chen F H, Han P D, Wang D H and Du Y W 2014 Intermetallics 47 31
[38] Niemann R, Heczko O, Schultz L and Fahler S 2010 Appl. Phys. Lett. 97 222507
[39] Cugini1 F, Porcari G, Fabbrici S, Albertini F and Solzi M 2016 Phil. Trans. R. Soc. A 374 20150306
[40] Wu R, Shen F, Hu F, Wang J, Bao L, Zhang L, Liu Y, Zhao Y, Liang F, Zuo W, Sun J and Shen B 2016 Sci. Rep. 6 20993
[41] Brock J and Khan M 2017 J. Magn. Magn. Mater. 425 1
[42] Sharma V K, Chattopadhyay M K and Roy S B 2007 J. Phys. D: Appl. Phys. 40 1869
[43] Pathak A K, Dubenko I, Karaca H E, Stadler S and Ali N 2010 Appl. Phys. Lett. 97 062505
[44] Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y S 2014 Chin. Phys. B 23 067501
[45] Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y and Guimaraes A P 2006 Appl. Phys. Lett. 88 192511
[46] Phan T L, Zhang P, Dan N H, Yen N H, Thanh P T, Thanh T D, Phan M H and Yu S C 2012 Appl. Phys. Lett. 101 212403
[47] Sahoo R, Nayak A K, Suresh K G and Nigam A K, 2012 J. Magn. Magn. Mater. 324 1267
[48] Li Z B, Zhang Y D, Sanchez-Valdes C F, Sanchez-Llamazares J F, Esling C, Zhao X and Zuo L 2014 Appl. Phys. Lett. 104 044101
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!