CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field |
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为) |
National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China |
|
|
Abstract Nonvolatile manipulation of transport and magnetic properties by external electric field is significant for information storage. In this study, we investigate the electric field control of resistance and magnetization in a magnetoelectric heterostructure comprising an electronic phase-separated La0.325Pr0.3Ca0.375MnO3 (LPCMO) thin film and a ferroelectric (011)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) substrate. In a room-temperature poled sample, the metal-to-insulator transition temperature of an LPCMO film increases and the resistance decreases with variation in the effect of the remnant strain. Meanwhile, the increase in the magnetization of the sample is observed as well. This effect would be beneficial for the development of novel storage devices with low power consumption.
|
Received: 26 April 2017
Revised: 15 May 2017
Accepted manuscript online:
|
PACS:
|
75.47.Gk
|
(Colossal magnetoresistance)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
64.75.St
|
(Phase separation and segregation in thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571108). |
Corresponding Authors:
Dun-Hui Wang
E-mail: wangdh@nju.edu.cn
|
Cite this article:
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为) Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field 2017 Chin. Phys. B 26 097502
|
[1] |
Spaldin N A and Fiebig M 2005 Science 309 391
|
[2] |
Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
|
[3] |
Martin L W, Crane S P, Chu Y H, Holcomb M B, Gajek M, Huijben M, Yang C H, Balke N and Ramesh R 2008 J Phys.: Condens. Matter 20 434220
|
[4] |
Wang Y, Hu J, Lin Y and Nan C W 2010 NPG Asia Mater. 2 61
|
[5] |
Vaz C A F, Hofman J, Ahn C H and Ramesh R 2010 Adv. Mater. 22 2900
|
[6] |
Tiele C, Dörr K, Bilani O, Rödel J and Schultz L 2007 Phys. Rev. B 75 054408
|
[7] |
Sheng Z G, Gao J and Sun Y P 2009 Phys. Rev. B 79 174437
|
[8] |
Chen Q P, Yang J J, Zhao Y G, Zhang S, Wang J W, Zhu M H, Yu Y, Zhang X Z, Wang Z, Yang B, Xie D and Ren T L 2011 Appl. Phys. Lett. 98 172507
|
[9] |
Yang Y, Luo Z L, Yang M M, Huang H, Wang H, Bao J, Pan G, Gao C, Hao Q, Wang S, Jokubaitis M, Zhang W, Xiao G, Yao Y, Liu Y and Li X G 2013 Appl. Phys. Lett. 102 033501
|
[10] |
Zhao W, Zhang D, Meng D, Huang W, Feng L, Hou C, Lu Y, Yin Y and Li X 2016 Appl. Phys. Lett. 109 263502
|
[11] |
Zhou W, Xiong Y, Zhang Z, Wang D, Tan W, Cao Q, Qian Z and Du Y 2016 ACS Appl. Mater. Interfaces 8 5424
|
[12] |
Yang J J, Zhao Y G, Tian H F, Luo L B, Zhang H Y, He Y J and Luo H S 2009 Appl. Phys. Lett. 94 212504
|
[13] |
Park J H, Jeong Y K, Ryu S, Son J Y and Jang H M 2010 Appl. Phys. Lett. 96 192504
|
[14] |
Liu M, Hofman J, Wang J, Zhang J, Nelson-Cheeseman B and Bhattacharya A 2013 Sci. Rep. 3 1876
|
[15] |
Nan T, Liu M, Ren W, Ye Z G and Sun N X 2014 Sci. Rep. 4 5931
|
[16] |
Zhu Q X, Yang M M, Zheng M, Zheng R K, Guo L J, Wang Y, Zhang J X, Li X M, Luo H S and Li X G 2015 Adv. Func. Mater. 25 1111
|
[17] |
Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
|
[18] |
Shen J, Ward T Z and Yin L F 2013 Chin. Phys. B 22 017501
|
[19] |
Ahn K H, Lookman T and Bishop A R 2004 Nature 428 401
|
[20] |
Ward T Z, Budai J D, Gai Z, Tischler J Z, Yin L and Shen J 2009 Nat. Phys. 5 885
|
[21] |
Zheng M, Li X Y, Yang M M, Zhu Q X, Wang Y, Li X M, Shi X, Chan H L W, Li X G, Luo H S and Zheng R K 2013 Appl. Phys. Lett. 103 263507
|
[22] |
Zhao Y Y, Wang J, Kuang H, Hu F X, Zhang H R, Liu Y, Zhang Y, Wang S H, Wu R R, Zhang M, Bao L F, Sun J R and Shen B G 2014 Sci. Rep. 4 7075
|
[23] |
Jiang T, Wang X, Shen C, Wang X, Peng L, Fan L and Wu W 2016 Appl. Phys. Lett. 108 113504
|
[24] |
Wang J F, Jiang Y C, Wu Z P and Gao J 2013 Appl. Phys. Lett. 102 071913
|
[25] |
Li W, Dong X L, Wang S H and Jin K X 2016 Appl. Phys. Lett. 109 091907
|
[26] |
Noheda B, Cox D E, Shirane G, Gao J and Ye Z G 2002 Phys. Rev. B 66 054104
|
[27] |
Wu T, Zhao P, Bao M, Bur A, Hockel J L, Wong K, Mohanchandra K P, Lynch C S and Carman G P 2011 J. Appl. Phys. 109 124101
|
[28] |
Wu T, Bur A, Wong K, Zhao P, Lynch C S, Amiri P K, Wang K L and Carman G P 2011 Appl. Phys. Lett. 98 262504
|
[29] |
Zhu Y, Du K, Niu J, Lin L, Wei W, Liu H, Lin H, Zhang K, Yang T, Kou Y, Shao J, Gao X, Xu X, Wu X, Dong S, Yin L and Shen J 2016 Nat. Commun. 7 11260
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|