Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077201    DOI: 10.1088/1674-1056/26/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field

Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Abstract  

By solving the Bogoliubov–de Gennes equation, the influence of the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder–Tinkham–Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin–orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.

Keywords:  Rashba spin–      orbit coupling      induced superconducting pair potential      coherent charge transport      zero-bias conductance peaks  
Received:  20 February 2017      Revised:  17 April 2017      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Corresponding Authors:  Liang-Bin Hu     E-mail:  lbhu@126.com

Cite this article: 

Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field 2017 Chin. Phys. B 26 077201

[1] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[2] Wolf S A 2001 Science 294 1488
[3] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
[5] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[6] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[7] Wunderlich J, Kastner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[8] Bauer G E W, Tserkovnyak Y, Brataas A, Ren J, Xia K, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 155304
[9] Zyuzin V A, Silvestrov P G and Mishchenko E G 2007 Phys. Rev. Lett. 99 106601
[10] Bokes P, Corsetti F and Godby R W 2008 Phys. Rev. Lett. 101 046402
[11] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[12] Silvestrov P G, Zyuzin V A and Mishchenko E G 2009 Phys. Rev. Lett. 102 196802
[13] Rech J, Micklitz T and Matveev K A 2009 Phys. Rev. Lett. 102 116402
[14] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
[15] Gelabert M M, Serra L, Sanchez D and Lopez R 2010 Phys. Rev. B 81 165317
[16] Zainuddin A N M, Hong S, Siddiqui L and Datta S 2011 Phys. Rev. B 84 165306
[17] Duckheim M, Loss D, Scheid M, Richter K, Adagideli I and Jacquod P 2010 Phys. Rev. B 81 085303
[18] Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
[19] Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
[20] Xu L, Li X Q and Sun Q F 2014 Scientific Report 4 7527
[21] Wu W, Rachel S, Liu W M and Hur K L 2012 Phys. Rev. B 85 205102
[22] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[23] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[24] Yokoyama T, Tanaka Y and Inoue J 2006 Phys. Rev. B 74 035318
[25] Linder J and Yokoyama T 2011 Phys. Rev. Lett. 106 237201
[26] Lv B, Zhang C and Ma Z S 2012 Phys. Rev. Lett. 108 077002
[27] Xu L T and Li X Q 2014 Europhys. Lett. 108 67013
[28] Hao X J, Li H O, Tu T, Zhou C, Cao G, Guo G C, Guo G P, Fung W Y, Ji Z Q and Lu W 2011 Phys. Rev. B 84 195448
[29] Takei S and Galitski V 2012 Phys. Rev. B 86 054521
[30] Liu N Q, Huang L J, Wang R Q and Hu L B 2016 Chin. Phys. B 25 027201
[31] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[32] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[33] Alicea J. 2010 Phys. Rev. B 81 125318
[34] Sau J D, Tewari S, Lutchyn R M, Stanescu T D and Das Sarma S 2010 Phys. Rev. B 82 214509
[35] Y Oreg, G Refael and F von Oppen 2010 Phys. Rev. Lett. 105 177002
[36] Yamakage A, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 087003
[37] Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
[38] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[39] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[40] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[41] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406
[42] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[43] Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygrd J and Marcus C M 2015 Nat. Nanotech. 10 232
[44] Li S, Huang G Y, Guo J K, Kang N, Caroff P and Xu H Q 2017 Chin. Phys. B 26 027305
[45] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[46] Lee E J H, Jiang X C, Houzet M, Aguado R, Lieber C M and Franceschi S D 2013 Nat. Nanotech. 9 79
[47] Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 109 267002
[48] Liu X, Sau J D and Das Sarma S 2015 Phys. Rev. B 92 014513
[49] Das Sarma S, Nag A and Sau J D 2016 Phys. Rev. B 94 035143
[50] Sharma G and Tewari S 2016 Phys. Rev. B 93 195161
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[14] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!