CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field |
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) |
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China |
|
|
Abstract By solving the Bogoliubov–de Gennes equation, the influence of the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder–Tinkham–Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin–orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.
|
Received: 20 February 2017
Revised: 17 April 2017
Accepted manuscript online:
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.50.Jt
|
(Galvanomagnetic and other magnetotransport effects)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
Corresponding Authors:
Liang-Bin Hu
E-mail: lbhu@126.com
|
Cite this article:
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field 2017 Chin. Phys. B 26 077201
|
[1] |
Datta S and Das B 1990 Appl. Phys. Lett. 56 665
|
[2] |
Wolf S A 2001 Science 294 1488
|
[3] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[4] |
Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
|
[5] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[6] |
Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
|
[7] |
Wunderlich J, Kastner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
|
[8] |
Bauer G E W, Tserkovnyak Y, Brataas A, Ren J, Xia K, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 155304
|
[9] |
Zyuzin V A, Silvestrov P G and Mishchenko E G 2007 Phys. Rev. Lett. 99 106601
|
[10] |
Bokes P, Corsetti F and Godby R W 2008 Phys. Rev. Lett. 101 046402
|
[11] |
Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
|
[12] |
Silvestrov P G, Zyuzin V A and Mishchenko E G 2009 Phys. Rev. Lett. 102 196802
|
[13] |
Rech J, Micklitz T and Matveev K A 2009 Phys. Rev. Lett. 102 116402
|
[14] |
Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
|
[15] |
Gelabert M M, Serra L, Sanchez D and Lopez R 2010 Phys. Rev. B 81 165317
|
[16] |
Zainuddin A N M, Hong S, Siddiqui L and Datta S 2011 Phys. Rev. B 84 165306
|
[17] |
Duckheim M, Loss D, Scheid M, Richter K, Adagideli I and Jacquod P 2010 Phys. Rev. B 81 085303
|
[18] |
Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
|
[19] |
Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
|
[20] |
Xu L, Li X Q and Sun Q F 2014 Scientific Report 4 7527
|
[21] |
Wu W, Rachel S, Liu W M and Hur K L 2012 Phys. Rev. B 85 205102
|
[22] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[23] |
He P B and Liu W M 2005 Phys. Rev. B 72 064410
|
[24] |
Yokoyama T, Tanaka Y and Inoue J 2006 Phys. Rev. B 74 035318
|
[25] |
Linder J and Yokoyama T 2011 Phys. Rev. Lett. 106 237201
|
[26] |
Lv B, Zhang C and Ma Z S 2012 Phys. Rev. Lett. 108 077002
|
[27] |
Xu L T and Li X Q 2014 Europhys. Lett. 108 67013
|
[28] |
Hao X J, Li H O, Tu T, Zhou C, Cao G, Guo G C, Guo G P, Fung W Y, Ji Z Q and Lu W 2011 Phys. Rev. B 84 195448
|
[29] |
Takei S and Galitski V 2012 Phys. Rev. B 86 054521
|
[30] |
Liu N Q, Huang L J, Wang R Q and Hu L B 2016 Chin. Phys. B 25 027201
|
[31] |
Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
|
[32] |
Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
|
[33] |
Alicea J. 2010 Phys. Rev. B 81 125318
|
[34] |
Sau J D, Tewari S, Lutchyn R M, Stanescu T D and Das Sarma S 2010 Phys. Rev. B 82 214509
|
[35] |
Y Oreg, G Refael and F von Oppen 2010 Phys. Rev. Lett. 105 177002
|
[36] |
Yamakage A, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 087003
|
[37] |
Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
|
[38] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[39] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[40] |
Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
|
[41] |
Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406
|
[42] |
Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
|
[43] |
Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygrd J and Marcus C M 2015 Nat. Nanotech. 10 232
|
[44] |
Li S, Huang G Y, Guo J K, Kang N, Caroff P and Xu H Q 2017 Chin. Phys. B 26 027305
|
[45] |
Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
|
[46] |
Lee E J H, Jiang X C, Houzet M, Aguado R, Lieber C M and Franceschi S D 2013 Nat. Nanotech. 9 79
|
[47] |
Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 109 267002
|
[48] |
Liu X, Sau J D and Das Sarma S 2015 Phys. Rev. B 92 014513
|
[49] |
Das Sarma S, Nag A and Sau J D 2016 Phys. Rev. B 94 035143
|
[50] |
Sharma G and Tewari S 2016 Phys. Rev. B 93 195161
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|