Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077202    DOI: 10.1088/1674-1056/26/7/077202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge

Long-Yan Gong(巩龙延)1,2,3, Xiao-Xin Zhao(赵小新)2
1 Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  

Recently, an interesting family of quasiperiodic models with exact mobility edges (MEs) has been proposed (Phys. Rev. Lett. 114 146601 (2015)). It is self-dual under a generalized duality transformation. However, such transformation is not obvious to map extended (localized) states in the real space to localized (extended) ones in the Fourier space. Therefore, it needs more convictive evidences to confirm the existence of MEs. We use the second moment of wave functions, Shannon information entropies, and Lypanunov exponents to characterize the localization properties of the eigenstates, respectively. Furthermore, we obtain the phase diagram of the model. Our numerical results support the existing analytical findings.

Keywords:  Anderson localization      quasiperiodic model      mobility edge  
Received:  17 February 2017      Revised:  14 April 2017      Accepted manuscript online: 
PACS:  72.20.Ee (Mobility edges; hopping transport)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  71.23.An (Theories and models; localized states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.61475075 and 61170321).

Corresponding Authors:  Long-Yan Gong     E-mail:  lygong@njupt.edu.cn

Cite this article: 

Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新) Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge 2017 Chin. Phys. B 26 077202

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] E. Abrahams (Ed.) 2010 50 Years of Anderson Localization (Singapore:World Scientific)
[3] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[4] Zhu H J and Xiong S J 2010 Chin. Phys. B 19 037107
[5] Gong L Y and Tong P Q 2008 Chin. Phys. B 17 0674
[6] Liao J, Shi G, Liu N, and Li Y Q 2016 Chin. Phys. B 25 117201
[7] Chou C and Ho C 2014 Chin. Phys. B 23 110302
[8] Maciá E and Maciá E 2014 ISRN Condens. Matter Phys. 2014 165943
[9] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[10] Soukoulis C M and Economou E N 1982 Phys. Rev. Lett. 48 1043
[11] Das Sarma S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[12] Dunlap D H, Wu H L and Phillips P W 1990 Phys. Rev. Lett. 65 88
[13] de Moura F A B F and Lyra M L 1998 Phys. Rev. Lett. 81 3735
[14] Rodríguez A, Malyshev V A, Sierra G, Martín-Delgado M A, Rodríguez-Laguna J and Domínguez-Adame F 2003 Phys. Rev. Lett. 90 027404
[15] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[16] Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 114 146601
[17] Gong L Y, Li W J, Zhao S M and Cheng W W 2016 Phys. Lett. A 380 59
[18] Gibbons M K, Logan D E and Madden P A 1988 Phys. Rev. B 38 7292
[19] Song Y, Atkinson W A and Wortis R 2007 Phys. Rev. B 76 045105
[20] Farchioni R, Grosso G and Pastori Parravicini G 1992 Phys. Rev. B 45 6383
[21] Zhou P Q, Fu X J, Lu C H, Guo Z Z and Liu Y Y 1996 Z. Phys. B 100 321
[22] Johansson M and Riklund R 1991 Phys. Rev. B 43 13468
[23] Gong L Y, Wei L, Zhao S M and Cheng W W 2012 Phys. Rev. E 86 061122
[24] Persson P O Eigenvalues of tridiagonal matrices in matlab
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[4] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[5] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[6] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[7] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[8] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[9] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[10] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
[11] Disordered quantum walks in two-dimensional lattices
Zhang Rong(张融), Xu Yun-Qiu(徐韵秋), Xue Peng(薛鹏). Chin. Phys. B, 2015, 24(1): 010303.
[12] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
[13] State vector evolution localized over the edges of a square tight-binding lattice
He Liang-Ming(何良明) and Shi Duan-Wen (石端文). Chin. Phys. B, 2009, 18(3): 1214-1220.
[14] Fidelity of an electron in one-dimensional determined potentials
Song Wen-Guang(宋文广) and Tong Pei-Qing(童培庆) . Chin. Phys. B, 2009, 18(11): 4707-4710.
No Suggested Reading articles found!