Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037502    DOI: 10.1088/1674-1056/25/3/037502
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

Ling-Wei Li(李领伟)1,2
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China;
2. Institute of Materials Physics and Chemistry, Colleague of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  

The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented.

Keywords:  magnetocaloric effect      rare earth based intermetallic compounds      RENi2B2C superconductors      magnetic phase transition  
Received:  21 December 2015      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  71.20.Eh (Rare earth metals and alloys)  
  75.47.Np (Metals and alloys)  
  75.50.Ee (Antiferromagnetics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

Corresponding Authors:  Ling-Wei Li     E-mail:  lingwei@epm.neu.edu.cn

Cite this article: 

Ling-Wei Li(李领伟) Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals 2016 Chin. Phys. B 25 037502

[1] Warburg E 1881 Ann. Phys. (Leipzig) 13 141
[2] Debye P 1926 Ann. Phys. 81 1154
[3] Giauque W F 1927 J. Am. Chem. Soc. 49 1864
[4] Giauque W F and MacDougall D P 1933 Phys. Rev. 43 768
[5] Li R, Numazawa T, Hashimoto T, Tomoyiko A, Goto T and Todo S 1986 Adv. Cryog. Eng. 32 287
[6] McMichael R D, Ritter J J and Shull R D J 1993 Appl. Phys. 73 6946
[7] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
[8] Tishin A M 1999 Handbook of Magnetic Materials 12 395
[9] Zimm C, Jastrab A, Sternberg A, Pecharsky V K, Gschneidner K Jr, Osborne M and Anderson I 1998 Adv. Cryog. Eng. 43 1759
[10] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[11] Gschneidner K A Jr, Pecharsky V K and Tsoko A O 2005 Rep. Prog. Phys. 68 1479
[12] Singh N K, Suresh K G, Nigam A K, Malik S K, Coelho A A and Gama S 2007 J. Magn. Magn. Mater. 317 68
[13] Gratz Z and Markosyan A S 2001 J. Phys.: Condens. Matter 3 R385
[14] Bruck E 2005 J. Phys. D: Appl. Phys. 38 R381
[15] Tegus O, Bruck E, Buschow K H J and De Boer F R 2002 Nature 415 150
[16] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[17] Yue M, Zhang H G, Liu D M and Zhang J X 2015 Chin. Phys. B 24 017505
[18] Zhong W, Au C K and Du Y W 2013 Chin. Phys. B 22 057501
[19] Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325
[20] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[21] Li Z, Xu K, Zhang Y, Tao C, Zheng D and Jing C 2015 Sci. Rep. 5 15413
[22] Liu J 2014 Chin. Phys. B 23 047503
[23] Hu F X, Shen B G and Sun J R 2013 Chin. Phys. B 22 037505
[24] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[25] Hu F X, Shen B G, Sun J R, Wang G J and Cheng Z H 2002 Appl. Phys. Lett. 80 826
[26] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mate. 21 4545
[27] Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
[28] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[29] Zhang C L, Shi H F, Ye E J, Nie Y G, Han Z D, Qian B and Wang D H 2015 Appl. Phys. Lett. 107 212403
[30] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and Boer de F R 2012 Nat. Commun. 3 873
[31] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H. W, Wang H, Wu G H and Zhang X X 2015 Adv. Electron. Mater. 1 1500076
[32] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
[33] Zhang H and Shen B G 2015 Chin. Phys. B 24 127504
[34] Franco V, Blazquez J S, Ingale B and Conde A 2012 Ann. Rev. Mater. Res. 42 305
[35] Manosa L, Planes A and Acet M 2013 J. Mater. Chem. A 1 4925
[36] Li L W, Namiki T, Huo D, Qian Z and Nishimura K 2013 Appl. Phys. Lett. 103 222405
[37] Gschneidner K A Jr and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[38] Kitanovski A and Egolf P W 2010 Int. J. Refrig. 33 449
[39] Oliveira de N A and Ranke von P J 2010 Phys. Rep. 489 89
[40] Gutfleisch O, Willard M A, E Bruck, Chen C H, Sankar S G and Liu J Ping 2011 Adv. Mater. 23 821
[41] Inoue J and Shimizu M 1982 J. Phys. F: Met. Phys. 12 1811
[42] Liu X B and Altounian Z 2005 J. Magn. Magn. Mater. 292 83
[43] Banerjee B K 1964 Phys. Lett. 12 16
[44] Taylor K N R 1971 Adv. Phys. 20 551
[45] Buschow K H J 1977 Rep. Prog. Phys. 40 1179
[46] Adroja D T and Malik S K 1991 J. Magn. Magn. Mater. 100 126
[47] Kalychak Ya M, Zaremba V I, Pöttgen R, Lukachuk M and Hoffmann R D 2004 Handbook on the Physics and Chemistry of Rare Earths 34 1
[48] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[49] Pöttgen R, Gulden Th and Simon A 1999 GIT Labor-Fachzeitschrift 43 133
[50] Pöttgen R, Lang A, Hoffman R D, Künnen B, Kotzyba G, Müllmann R, Mosel B D and Rosenhahn C 1999 Z. Kristallogr. 214 143
[51] Morin P, Rouchy J and Lacheisserie E T 1977 Phys. Rev. B 16 3182
[52] Galéra R M, Joly Y, Rogalev A and Binggeli N 2008 J. Phys.: Condens. Matter 20 395217
[53] Jeromen A and Trontelj Z 2005 J. Appl. Phys. 98 033515
[54] Givord D, Morin P and Schmitt D 1982 J. Appl. Phys. 53 2445
[55] Sousa de V S R, Plaza E J R and Ranke von P J 2010 J. Appl. Phys. 107 103928
[56] Sousa de V S R, Ranke von P J and Gandra F C G 2011 J. Appl. Phys. 109 063904
[57] Li L W, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R and Zhou S 2015 Appl. Phys. Lett. 107 132401
[58] Li L W, Yuan Y, Zhang Y, Pöttgen R and Zhou S 2015 J. Alloys Compd. 643 147
[59] Hermes W, Harmening T and Pöttgen R 2009 Chem. Mater. 21 3325
[60] Li L W, Niehaus O, Gerke B and Pöttgen R 2014 IEEE Trans. Magn. 50 2503604
[61] Zhang Y K, Hou L, Ren Z M, Li X and Wilde G 2016 J. Alloys Compd. 565 635
[62] Kersting M, Matar S F, Schwickert C and Pöttgen R 2012 Z. Naturforsch. 67b 61
[63] Couillaud Y S, Linsinger S, Duée C, Rougier A, Chevalier B, Pöttgen R and Bobet J L 2010 Intermetallics 18 1115
[64] Tappe F, Scheickert C, Linsinger S and Pöttgen R 2011 Monatsh. Chem. 142 1087
[65] Mater S F, Chevalier B B and Pöttgen R 2012 Intermetallics 31 88
[66] Li L W, Niehaus O, Kersting M and Pöttgen R 2014 Appl. Phys. Lett. 104 092416
[67] Li L W, Niehaus O, Kersting M and Pöttgen R 2015 Intermetallics 62 17
[68] Li L W, Niehaus O, Kersting M and Pöttgen R 2015 IEEE Trans. Magn. 51 2503804
[69] Linsinger S, Hermes W, Eul M and Pöttgen R 2010 J. Appl. Phys. 108 043903
[70] Gorsse S, Chevalier B, Tuncel S and Pöttgen R 2009 J. Solid State Chem. 182 948
[71] Tappe F and Pöttgen R 2011 Rev. Inorg. Chem. 31 5
[72] Hermes W, Rodewals U C and Pöttgen R 2010 J. Appl. Phys. 108 113919
[73] Li L W, Niehaus O, Johnscher M and Pöttgen R 2015 Intermetallics 60 9
[74] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
[75] Franco V, CondeA, Romero-Enrique J M and Blázquez J S 2008 J. Phys.: Condens. Matter 20 285207
[76] Li L W, Hutchison W D, Huo D, Namiki T, Qian Z and Nishimura K 2012 Scripta Mater. 67 237
[77] Li L W, Hu G, Umehara I, Huo D, Hutchison W D, Namiki T and Nishimura K 2013 J. Alloys Compd. 575 1
[78] Li L W, Kadonaga M, Huo D, Qian Z, Namiki T and Nishimura K 2012 Appl. Phys. Lett. 101 122401
[79] Zhang Y K and Wilde G 2015 Physica B 472 56
[80] Li L W, Saensunon B, Hutchison W D, Huo D and Nishimura K 2014 J. Alloys Compd. 582 670
[81] Li L W, Nishimura K, Hutchison W D, Qian Z, Huo D and Namiki T 2012 Appl. Phys. Lett. 100 152403
[82] Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C and Shen B G 2013 J. Alloys Compd. 572 1
[83] Li L W, Nishimura K, Usui G, Huo D and Qian Z 2012 Intermetallics 23 101
[84] Zhang Y K, Yang B J and Wilde G 2015 J. Alloys Compd. 619 12
[85] Zhang Y K and Wilde G 2015 IEEE Trans. Magn. 51 2503104
[86] Li L W, Igawa H, Nishimura K and Huo D 2011 J. Appl. Phys. 109 083901
[87] Li L W, Namiki T, Huo D, Qian Z and Nishimura K 2013 Appl. Phys. Lett. 103 222405
[88] Li L W, Nishimura K and Yamane H 2009 Appl. Phys. Lett. 94 102509
[89] Li L W, Huo D, Igawa H and Nishimura K 2011 J. Alloys Compd. 509 1796
[90] Wang J L, Campbell S J, Cadogan J M, Studer A, Zeng R and Dou S X 2011 Appl. Phys. Lett. 98 232509
[91] Li L W, Nishimura K, Igawa H and Huo D 2011 J. Alloys Compd. 509 4198
[92] Zhang Y K, Wilde G, Li X, Ren Z M and Li L W 2015 Intermetallics 65 61
[93] Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R and Shen B G 2013 Appl. Phys. Lett. 103 202412
[94] Zhang Q, Cho J H, Li B, Hu W J, Zhang Z D 2009 Appl. Phys. Lett. 94 182501
[95] Bingham N S, Wang H, Qin F, Peng H X, Sun J F, Franco V, Srikanth H and Phan M H 2012 Appl. Phys. Lett. 101 102407
[96] Xia L, Tang M B, Chan K C and Dong Y D 2014 J. Appl. Phys. 115 223904
[97] Li L W, Huo D, Qian Z and Nishimura K 2014 Intermetallics 46 231
[98] Schäfer K, Schwickert C, Niehaus O, Winter F and Pöttgen R 2014 Solid. State Sci. 35 66
[99] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T Jr, Batlogg B, Dover van R B, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature 367 252
[100] Canfield P C, Gammel P L and Bishop D J 1998 Phys. Today 51 40
[101] Muller K H and Narozhnyi V N 2001 Rep. Prog. Phys. 64 943
[102] Li L W, Nishimura K, Fujii M, Matsuda K and Huo D 2010 Phys. Rev. B 81 214517
[103] Wolowiec C T, White B D and Maple M B 2015 Physica C 514 113
[104] Li L W and Nishimura K 2009 Appl. Phys. Lett. 95 132505
[105] Li L W, Nishimura K, Huo D, Kadonaga M, Namiki T and Qian Z 2011 Appl. Phys. Express 4 093101
[106] Li L W, Nishimura K, Kadonaga M, Qian Z and Huo D 2011 J. Appl. Phys. 110 043912
[107] Li L W, Fan H, Matsui S, Huo D and Nishimura K 2012 J. Alloys Compd. 529 25
[108] Zhang Y K and Yang B J 2014 J. Alloys Compd. 610 540
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[12] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[15] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
No Suggested Reading articles found!