Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037501    DOI: 10.1088/1674-1056/25/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system

C X Sang(桑成祥)1,2, G P Zhao(赵国平)1,2, W X Xia(夏卫星)2, X L Wan(万秀琳)1, F J Morvan1, X C Zhang(张溪超)1, L H Xie(谢林华)1, J Zhang(张健)2, J Du(杜娟)2, A R Yan(闫阿儒)2, P Liu(刘平)2,3
1. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China;
2. Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3. Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
Abstract  The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8× 10-6 erg/cm to 0.45× 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers.
Keywords:  hysteresis loops      exchange coupling      micromagnetics      hard/soft bilayers  
Received:  16 September 2015      Revised:  05 November 2015      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.40.Mg (Numerical simulation studies)  
  75.30.Gw (Magnetic anisotropy)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).
Corresponding Authors:  G P Zhao, W X Xia     E-mail:  zhaogp@uestc.edu.cn;xiawxing@nimte.ac.cn

Cite this article: 

C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平) Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system 2016 Chin. Phys. B 25 037501

[1] Kneller E F and Hawig R 1991 IEEE Trans. Magn. 27 3588
[2] Tang J, Ma B, Zhang Z Z and Jin Q Y 2010 Chin. Phys. Lett. 27 077502
[3] Zhang W, Zhai Y, Lu M, You B, Zhai H R and Caroline G M 2015 Chin. Phys. B 24 047502
[4] Luo Z Y, Tang J, Ma B, Zhang Z Z, Jin Q Y and Wang J P 2012 Chin. Phys. Lett. 29 127501
[5] Cui W B, Takahashi Y K and Hono K 2012 Adv. Mater. 24 6530
[6] Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D and Srajer G and Liu J P 2004 Appl. Phys. Lett. 85 5293
[7] Yuan F T, Hsiao S N, Liao W M, Chen S K and Yao Y D 2006 J. Appl. Phys. 99 08E915
[8] Tang J, Yang L R, Wang X J, Zhang L, Wei C F, Chen B W and Mei Y 2012 Acta Phys. Sin. 61 240701 (in Chinese)
[9] Belemuk A M and Chui S T 2011 J. Appl. Phys. 110 073918
[10] Xia J, Zhao G P, Zhang H W, Cheng Z H, Feng Y P, Ding J and Yang H T 2012 J. Appl. Phys. 112 013918
[11] Wong D W, Sekhar M C, Gan W L, Purnama I and Lew W S 2015 J. Appl. Phys. 117 17A747
[12] Belemuk A M and Chui S T 2011 J. Appl. Phys. 109 093909
[13] Zhao G P, Zhao M G, Lim H S, Feng Y P and Ong C K 2005 Appl. Phys. Lett. 87 162513
[14] Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[15] Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S and Pareti L 2006 Phys. Rev. B 73 094406
[16] Skomki R and Coey J M D 1993 Phys. Rev. B 48 15812
[17] Zhang T L, Liu H Y, Liu J H and Jiang C B 2015 Appl. Phys. Lett. 106 162403
[18] Fullerton E E, Jiang J S and Bader S D 1999 J. Magn. Magn. Mater. 200 392
[19] Sellmyer D J 2002 Nature 420 374
[20] Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K and Sellmyer D J 2002 Adv. Mater. 14 1832
[21] Sawatzki S, Heller R and Mickel C 2011 J. Appl. Phys. 109 123922
[22] Choi Y, Jiang J S, Pearson J E, Bader S D, Kavich J J, Freeland J W and Liu J P 2007 Appl. Phys. Lett. 91 072509
[23] Zhang J, Li Y X, Wang F, Shen B G and Sun J R 2010 J. Appl. Phys. 107 043911
[24] Zhang J, Wang F, Zhang Y, Song J Z, Zhang Y, Shen B G and Sun J R 2012 J. Nanosci. Nanotechno. 12 1109
[25] Zhang J, Takahashi Y K, Gopalan R and Hono K 2005 Appl. Phys. Lett. 86 122509
[26] Liu X B and Altounian Z 2012 J. Appl. Phys. 111 07B526
[27] Donahue M J and Porter D G 1999 OOMMF User's Guide, version 1.0. NISTIR 6376, NIST, Gaithersburg, MD
[28] Brown J W F 1945 Rev. Mod. Phys. 17 15
[29] Asti G, Ghidini M and Neri F M 2004 Phys. Rev. B 69 174401
[30] Zhao G P, Deng Y, Zhang H W, Chen L, Feng Y P and Bo N 2010 J. Appl. Phys. 108 093928
[31] Leineweber T and Kronmüller H 1997 Phys. Status Solidi B 201 291
[32] Leineweber T and Kronmüller H 1997 J. Magn. Magn. Mater. 176 145
[33] Zhao G P, Deng Y, Zhang H W, Cheng Z H and Ding J 2011 J. Appl. Phys. 109 07D340
[34] Zhao G P, Morvan F J and Wan X L 2014 Rev. Nanosci. Nanotechno. 3 227
[35] Zhao G P, Zhang X F and Morvan F J 2015 Rev. Nanosci. Nanotechno. 4 1
[36] Fullerton E E, Jiang J S, Grimasitch M, Sowers C H and Bader S D 1998 Phys. Rev. B 58 12193
[1] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[2] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[5] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[6] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[7] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[8] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[9] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[10] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[11] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[12] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[13] Evolution of structure and magnetic properties in PrCo5 magnet for high energy ball milling in ethanol
Li Zhu-Bai (李柱柏), Lan Jian-Ting (兰剑亭), Zhang Xue-Feng (张雪峰), Liu Yan-Li (刘艳丽), Li Yong-Feng (李永峰). Chin. Phys. B, 2015, 24(8): 087501.
[14] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[15] Micromagnetic simulation of Sm-Co/α-Fe/Sm-Co trilayers with various angles between easy axes and the film plane
Zhang Xi-Chao (张溪超), Zhao Guo-Ping (赵国平), Xia Jing (夏静), Yue Ming (岳明), Yuan Xin-Hong (袁新红), Xie Lin-Hua (谢林华). Chin. Phys. B, 2014, 23(9): 097504.
No Suggested Reading articles found!