Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117307    DOI: 10.1088/1674-1056/24/11/117307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation

Zhang Sheng (张昇)a b, Wei Ke (魏珂)b, Yu Le (余乐)a b, Liu Guo-Guo (刘果果)b, Huang Sen (黄森)b, Wang Xin-Hua (王鑫华)b, Pang Lei (庞磊)b, Zheng Ying-Kui (郑英奎)b, Li Yan-Kui (李艳奎)b, Ma Xiao-Hua (马晓华)a, Sun Bing (孙兵)b, Liu Xin-Yu (刘新宇)b
a School of Advanced Materials and Nanotechnology, Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Xidian University, Xi’an 710071, China;
b Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  

In this paper, Al2O3 ultrathin film used as the surface passivation layer for AlGaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al2O3+BCB passivation. For the Al2O3+BCB passivated device with a 0.7 μ gate, the value of fmax reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The fmax/ft ratio (≥ 4) is also improved after Al2O3+BCB passivation. The capacitance-voltage (C-V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states (on the order of magnitude of 1010 cm-2) than that obtained at commonly studied SiN HEMT.

Keywords:  AlGaN/GaN HEMT      Al2O3      BCB      passivation  
Received:  08 June 2015      Revised:  23 July 2015      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
  73.61.Ey (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
Corresponding Authors:  Wei Ke, Ma Xiao-Hua     E-mail:  weike@ime.ac.cn;xhma@xidian.edu.cn

Cite this article: 

Zhang Sheng (张昇), Wei Ke (魏珂), Yu Le (余乐), Liu Guo-Guo (刘果果), Huang Sen (黄森), Wang Xin-Hua (王鑫华), Pang Lei (庞磊), Zheng Ying-Kui (郑英奎), Li Yan-Kui (李艳奎), Ma Xiao-Hua (马晓华), Sun Bing (孙兵), Liu Xin-Yu (刘新宇) AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation 2015 Chin. Phys. B 24 117307

[1] Koley G, Tilak V, Eastman L F and Spencer M G;2003 IEEE Trans. Electron Devices 50 886
[2] Derluyn J;2005 J. Appl. Phys. 98 054501
[3] Tang Z K, Huang S, Tang X, Li B K and Chen K J;2014 IEEE Trans. Electron Dev. 61 2785
[4] Tan W S, Uren M J, Houston P A, Green R T, Balmer R S and Martin T;2006 IEEE Electron Dev. Lett. 27 1
[5] Polyakov A Y, Smirnov N B, Govorkov A V, Danilin V N, Zhukova T A, Luo B, Ren F, Gila B P, Abernathy C R, Pearton S J and Onstine A H;2004 J. Electrochem. Soc. 151 G497
[6] Luo B, Johnson J W, Gila B P, Abernathy C R, Ren F, Pearton S J, Baca A G, Babiran A M, Wowchack A M and Chow P P;2002 Solid-State Electron. 46 467
[7] Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A and Morkoc H;2007 J. Appl. Phys. 101 113709
[8] Gila B P, Hlad M, Onstlna A H, Frazier R, Thaler G T, Herrero A, Lambers E, Abernathy C R, Pearton S J, Anderson T, Jang S, Ren F, Moser N, Fitch R C and Freund M;2005 Appl. Phys. Lett. 87 163503
[9] Sen H, Qimeng J, Shu Y, Chun H Z and Chen K J;2012 IEEE Electron Dev. Lett. 33 516
[10] Sen H, Qimeng J, Shu Y, Zhi K T and Chen K J;2013 IEEE Electron Dev. Lett. 34 193
[11] Ye P D, Yang B, Ng K K, et al. 2004 IEEE Lester Eastman Conference on High Performance Devices 4-6 167-172
[12] Yue Y Z, Hao Y, Zhang J C, Feng Q, Ni J Y and Ma X H 2008 Chin. Phys. B 17 1674
[13] Mizue C, Hori Y, Miczek M and Hashizume T;2011 J. Appl. Phys. 50 021001
[14] Meyer D J 2008 CS MANTECH Conference 13.4 14-17
[15] Hong S K;2008 Electronics Lett. 44 1091
[16] Berroth M and Bosch R;1991 IEEE Trans. Microw Theory Tech. 39 224
[17] Qian F, Jacob H L and Hadis M;2010 Proc. IEEE 98 1140
[18] Takatani S and Chen C D 2009 Proc. IEEE CSIC Symp. Tech. Digest. 137
[19] Takatani S and Chen C D;2011 IEEE Trans. Electron Dev. 58 4301
[1] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[6] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[11] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[12] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[13] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[14] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!