|
|
Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling |
Xie Wen-Fang (解文方)a, He Yan-Zhang (贺彦章)b, Bao Cheng-Guang (鲍诚光)b |
a School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China; b School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract The evolution of two-component cold atoms on a ring with spin–orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.
|
Received: 06 November 2014
Revised: 16 January 2015
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874249). |
Corresponding Authors:
Bao Cheng-Guang
E-mail: stsbcg@mail.sysu.edu.cn
|
About author: 03.75.Kk; 03.75.Mn; 03.75.Nt |
Cite this article:
Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光) Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling 2015 Chin. Phys. B 24 060305
|
[1] |
Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
|
[2] |
Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
|
[3] |
Laughlin R B 1983 Phys. Rev. Lett. 50 1395
|
[4] |
Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature 396 345
|
[5] |
Dalibard J, Gerbier F, Juzeliunas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523
|
[6] |
Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
|
[7] |
Galitski V and Spielman I B 2013 Nature 494 49
|
[8] |
Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
|
[9] |
Zhai H 2014 arXiv: 1403.8021v1 [cond-mat.quant-gas]
|
[10] |
Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
|
[11] |
Ruseckas J, Juzeliunas G, Ohberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
|
[12] |
Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401
|
[13] |
Liu X J, Borunda M F, Liu X and Sinova J 2009 Phys. Rev. Lett. 102 046402
|
[14] |
Juzeliunas G, Ruseckas J and Dalibard J 2010 Phys. Rev. A 81 053403
|
[15] |
Anderson B M, Juzeliunas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
|
[16] |
Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
|
[17] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
|
[18] |
Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
|
[19] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[20] |
Beattie S, Moulder S, Fletcher R J and Hadzibabic Z 2013 Phys. Rev. Lett. 110 025301
|
[21] |
Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
|
[22] |
Li Y, Martone G I and Stringari S 2012 Europhys. Lett. 99 56008
|
[23] |
Ozawa T, Pitaevskii L P and Stringari S 2013 Phys. Rev. A 87 063610
|
[24] |
Chen Z and Zhai H 2012 Phys. Rev. A 86 041604
|
[25] |
Gupta S, Murch K W, Moore K L, Purdy T P and Stamper-Kurn D M 2005 Phys. Rev. Lett. 95 143201
|
[26] |
Arnold A S, Garvie C S and Riis E 2006 Phys. Rev. A 73 041606
|
[27] |
Ryu C, Andersen M F, Cladé P, Natarajan V, Helmerson K and Phillips W D 2007 Phys. Rev. Lett. 99 260401
|
[28] |
Henderson K, Ryu C, MacCormick C and Boshier M G 2009 New J. Phys. 11 043030
|
[29] |
Ramanathan A, Wright K C, Muniz S R, Zelan M, Hill W T, Lobb C J, Helmerson K, Phillips W D and Campbell G K 2011 Phys. Rev. Lett. 106 130401
|
[30] |
Sherlock B E, Gildemeister M, Owen E, Nugent E and Foot C J 2011 Phys. Rev. A 83 043408
|
[31] |
Moulder S, Beattie S, Smith R P, Tammuz N and Hadzibabic Z 2012 Phys. Rev. A 86 013629
|
[32] |
Wright K C, Blakastal R B, Lobb C J, Phillips W P and Campbell G K 2012 arXiv: 1208.3608
|
[33] |
Xue Rui, Li W D and Liang Z X 2014 Chin. Phys. Lett. 31 030302
|
[34] |
Zheng W and Li Z B 2012 Phys. Rev. A 85 053607
|
[35] |
Li Y, Martone G I, Pitaevskii L P and Stringari S 2013 Phys. Rev. Lett. 110 235302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|