Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 126701    DOI: 10.1088/1674-1056/25/12/126701

Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit

S M Moniri, H Yavari, E Darsheshdar
Department of Physics, University of Isfahan, Isfahan 81746, Iran

By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose-Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose-Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.

Keywords:  Landau damping      mixtures of Bose and Fermi superfluids      dipole-dipole interaction  
Received:  19 June 2016      Revised:  25 July 2016      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  67.60.Fp (Bose-Fermi mixtures)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Corresponding Authors:  H Yavari     E-mail:

Cite this article: 

S M Moniri, H Yavari, E Darsheshdar Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit 2016 Chin. Phys. B 25 126701

[1] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Liu X J and Hu H 2003 Phys. Rev. A 68 033613
[4] Ferrier-Barbut I, Delehaye M, Laurent S, Grier A T, Pierce M, Rem B S, Chevy F and Salomon C 2014 Science 345 1035
[5] Cui X 2014 Phys. Rev. A 90 041603
[6] Ozawa T, Recati A, Delehaye M, Chevy F and Stringari S 2014 Phys. Rev. A 90 043608
[7] Wen L and Li J 2014 Phys. Rev. A 90 053621
[8] Zhang R, Zhang W, Zhai H and Zhang P 2014 Phys. Rev. A 90 063614
[9] Kinnunen J J and Bruun G M 2015 Phys. Rev. A 91 041605
[10] Shen H and Zheng W 2015 Phys. Rev. A 92 033620
[11] Zheng W and Zhai H 2014 Phys. Rev. Lett. 113 265304
[12] Beliaev S T 1958 Sov. Phys. JETP 7 289
[13] Popov V N 1972 Theor. Math. Phys. 11 478
[14] Hohenberg P C and Martin P C 1965 Ann. Phys. 34 291
[15] Szépfalusy P and Kondor I 1974 Ann. Phys. 82 1
[16] Ospelkaus S, Peér A, Ni K K, Zirbel J J, Neyenhuis B, Kotochigova S, Julienne P S, Ye J and Jin D S 2008 Nat. Phys. 4 622
[17] Ni K K, Ospelkaus S, De Miranda M H G, Peér A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[18] Ospelkaus S, Ni K K, De Miranda M H G, Neyenhuis B, Wang D, Kotochigova S, Julienne P S, Jin D S and Ye J 2009 Faraday Discuss. 142 351
[19] Vengalattore M, Leslie S R, Guzman J and Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403
[20] Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L 2005 Phys. Rev. Lett. 95 150406
[21] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107 190401
[22] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[23] Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
[24] Aymar M and Dulieu O 2005 J. Chem. Phys. 122 204302
[25] Natu S S and Wilson R M 2013 Phys. Rev. A 88 063638
[26] Moniri S M, Yavari H and Darsheshdar E 2016 Eur. Phys. J. Plus 131 122
[27] Popov V N 1965 Sov. Phys. JETP 20 23
[28] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases, (Cambridge:Cambridge University Press)
[29] Ronen S, Bortolotti D C E and Bohn J L 2006 Phys. Rev. A 74 013623
[30] Ticknor C 2012 Phys. Rev. A 85 033629
[31] Baillie D and Blakie P B 2010 Phys. Rev. A 82 033605
[32] Giorgini S 1998 Phys. Rev. A 57 2949
[1] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[2] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[3] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[4] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[5] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[6] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[7] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[8] Levitation and lateral forces between a point magnetic dipole and a superconducting sphere
H M Al-Khateeb, M K Alqadi, F Y Alzoubi, B Albiss, M K Hasan (Qaseer), N Y Ayoub. Chin. Phys. B, 2016, 25(5): 058402.
[9] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[10] Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere
Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩). Chin. Phys. B, 2015, 24(2): 024205.
[11] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[12] Dynamics of two polarized nanoparticles
Duan Xiao-Yong (段晓勇), Wang Zhi-Guo (王治国). Chin. Phys. B, 2015, 24(11): 118106.
[13] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[14] Measurement-induced disturbance between two atoms in Tavis–Cummings model with dipole–dipole interaction
Zhang Guo-Feng (张国锋), Wang Xiao (王骁), Lü Guang-Hong (吕广宏). Chin. Phys. B, 2014, 23(10): 104204.
[15] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
No Suggested Reading articles found!