Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020303    DOI: 10.1088/1674-1056/ab65b7
GENERAL Prev   Next  

Interference properties of two-component matter wave solitons

Yan-Hong Qin(秦艳红)1,2, Yong Wu(伍勇)3, Li-Chen Zhao(赵立臣)1,2, Zhan-Ying Yang(杨战营)1,2
1 School of Physics, Northwest University, Xi'an 710127, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China;
3 School of Public Management, Northwest University, Xi'an 710127, China
Abstract  Wave properties of solitons in a two-component Bose-Einstein condensate are investigated in detail. We demonstrate that dark solitons in one of components admit interference and tunneling behavior, in sharp contrast to the scalar dark solitons and vector dark solitons. Analytic analyses of interference properties show that spatial interference patterns are determined by the relative velocity of solitons, while temporal interference patterns depend on the velocities and widths of two solitons, differing from the interference properties of scalar bright solitons. Especially, for an attractive interactions system, we show that interference effects between the two dark solitons can induce some short-time density humps (whose densities are higher than background density). Moreover, the maximum hump value is remarkably sensitive to the variation of the solitons' parameters. For a repulsive interactions system, the temporal-spatial interference periods of dark-bright solitons have lower limits. Numerical simulation results suggest that interference patterns for the dark-bright solitons are more robust against noises than bright-dark solitons. These explicit interference properties can be used to measure the velocities and widths of solitons. It is expected that these interference behaviors can be observed experimentally and can be used to design matter wave soliton interferometer in vector systems.
Keywords:  solitons      interference behavior      tunneling dynamics      two-component Bose-Einstein condensates  
Received:  21 October 2019      Revised:  16 December 2019      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775176), the Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2018KJXX-094), the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province, China (Grant No. 2017KCT-12), and the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32).
Corresponding Authors:  Li-Chen Zhao     E-mail:

Cite this article: 

Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营) Interference properties of two-component matter wave solitons 2020 Chin. Phys. B 29 020303

[1] Gross E P 1961 Nuovo Cimento 20 454 Pitaevskii L P 1961 Sov. Phys. JETP 13 451
[2] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press)
[3] Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2007 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin, Heidelberg: Springer)
[4] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[5] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[6] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[7] Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A and Cornish S L 2013 Nat. Commun. 4 1865
[8] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[9] Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97
[10] Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
[11] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
[12] Salle M A and Matveev V B 1991 Darboux transformations and solitons (Berlin: Springer-Verlag)
[13] Akhmediev N and Ankiewicz A 1993 Opt. Commun. 100 186
[14] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[15] Zhao L C, Xin G G and Yang Z Y 2017 J. Opt. Soc. Am. B 34 2569
[16] Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918
[17] McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002
[18] Polo J and Ahufinger V 2013 Phys. Rev. A 88 053628
[19] Negretti A and Henkel C 2004 J. Phys. B: At. Mol. Opt. Phys. 37 385
[20] Helm J L, Cornish S L and Gardiner S A 2015 Phys. Rev. Lett. 114 134101
[21] Zhao L C, Xin G G, Yang Z Y and Yang W L "Atomic bright soliton interferometry", arXiv: 1804.01951
[22] Zhao L C, Ling L, Yang Z Y and Liu J 2016 Nonlinear Dyn. 83 659
[23] Zhao L C, Ling L, Yang Z Y and Yang W L 2017 Nonlinear Dyn. 88 2957
[24] Karamatskos E T, Stockhofe J, Kevrekidis P G and Schmelcher P 2015 Phys. Rev. A 91 043637
[25] Busch Th, Cirac J I, Pérez-García V M and Zoller P 1997 Phys. Rev. A 56 2978
[26] Liu X, Pu H, Xiong B, Liu W M and Gong J 2009 Phys. Rev. A 79 013423
[27] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G and Zhang X F 2018 Phys. Rev. A 97 063607
[28] Xu T and Chen Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 276
[29] Wang M and Chen Y 2019 Nonlinear Dyn. 98 1781
[30] Qin Y H, Zhao L C and Ling L M 2019 Phys. Rev. E 100 022212
[31] Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J and Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
[32] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[33] Ling L and Zhao L C 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 449
[34] Zhao L C, Yang Z Y and Yang W L 2019 Chin. Phys. B 28 010501
[35] Akhmediev N and Ankiewicz A 1999 Phys. Rev. Lett. 82 2661
[36] Vijayajayanthi M, Kanna T and Lakshmanan M 2008 Phys. Rev. A 77 013820
[37] Ling L, Zhao L C and Guo B 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 285
[38] Guo B, Ling L and Liu Q P 2012 Phys. Rev. E 85 026607
[39] Snyder A W and Mitchell D J 1997 Science 276 1538
[40] Kumar V R, Radha R and Panigrahi P K 2009 Phys. Lett. A 37 4381
[41] Belyaeva T L and Serkin V N 2012 Eur. Phys. J. D 66 153
[42] Ling L, Zhao L C and Guo B L 2015 Nonlinearity 28 3243
[43] Billam T P, Cornish S L, and Gardiner S A 2011 Phys. Rev. A 83 041602
[44] Barak A, Peleg O, Stucchio C, Soffer A and Segev M 2008 Phys. Rev. Lett. 100 153901
[45] Serkin V N, Chapelaa V M, Percinoa J and Belyaevab T L 2001 Opt. Commun. 192 237
[46] Serkin V N, Hasegawa A and Belyaeva T L 2013 J. Mod. Opt. 60 116
[47] Serkin V N, Hasegawa A and Belyaeva T L 2013 J. Mod. Opt. 60 444
[48] Martin A D and Ruostekoski J 2012 New. J. Phys. 14 043040
[49] Tkeshelashvili L 2012 Phys. Rev. A 86 033836
[50] Josephson B D 1962 Phys. Lett. 1 251
[51] Bao W, Tang Q and Xu Z 2013 J. Comput. Phys. 235 423
[52] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
[53] Busch Th and Anglin J R 2001 Phys. Rev. Lett. 87 010401
[54] Dean G, Klotz T, Prinari B and Vitale F 2013 Applic. Anal. 92 379
[55] Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
[56] Müntinga H, Ahlers H, Krutzik M, et al. 2013 Phys. Rev. Lett. 110 093602
[57] Helm J L, Billam T P, Rakonjac A, Cornish S L and Gardiner S A 2018 Phys. Rev. Lett. 12 063201
[58] Tang P, Peng P, Li Z, Chen X, Li X and Zhou X 2019 Phys. Rev. A 100 013618
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[9] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[10] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[11] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[12] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[13] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[14] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[15] Generation of breathing solitons in the propagation and interactions of Airy-Gaussian beams in a cubic-quintic nonlinear medium
Weijun Chen(陈卫军), Ying Ju(鞠莹), Chunyang Liu(刘春阳), Liankai Wang(王连锴), Keqing Lu(卢克清). Chin. Phys. B, 2018, 27(11): 114216.
No Suggested Reading articles found!