|
|
Interference properties of two-component matter wave solitons |
Yan-Hong Qin(秦艳红)1,2, Yong Wu(伍勇)3, Li-Chen Zhao(赵立臣)1,2, Zhan-Ying Yang(杨战营)1,2 |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 School of Public Management, Northwest University, Xi'an 710127, China |
|
|
Abstract Wave properties of solitons in a two-component Bose-Einstein condensate are investigated in detail. We demonstrate that dark solitons in one of components admit interference and tunneling behavior, in sharp contrast to the scalar dark solitons and vector dark solitons. Analytic analyses of interference properties show that spatial interference patterns are determined by the relative velocity of solitons, while temporal interference patterns depend on the velocities and widths of two solitons, differing from the interference properties of scalar bright solitons. Especially, for an attractive interactions system, we show that interference effects between the two dark solitons can induce some short-time density humps (whose densities are higher than background density). Moreover, the maximum hump value is remarkably sensitive to the variation of the solitons' parameters. For a repulsive interactions system, the temporal-spatial interference periods of dark-bright solitons have lower limits. Numerical simulation results suggest that interference patterns for the dark-bright solitons are more robust against noises than bright-dark solitons. These explicit interference properties can be used to measure the velocities and widths of solitons. It is expected that these interference behaviors can be observed experimentally and can be used to design matter wave soliton interferometer in vector systems.
|
Received: 21 October 2019
Revised: 16 December 2019
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775176), the Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2018KJXX-094), the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province, China (Grant No. 2017KCT-12), and the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32). |
Corresponding Authors:
Li-Chen Zhao
E-mail: zhaolichen3@nwu.edu.cn
|
Cite this article:
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营) Interference properties of two-component matter wave solitons 2020 Chin. Phys. B 29 020303
|
[1] |
Gross E P 1961 Nuovo Cimento 20 454 Pitaevskii L P 1961 Sov. Phys. JETP 13 451
|
[2] |
Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press)
|
[3] |
Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2007 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin, Heidelberg: Springer)
|
[4] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[5] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[6] |
Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
|
[7] |
Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A and Cornish S L 2013 Nat. Commun. 4 1865
|
[8] |
Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
|
[9] |
Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97
|
[10] |
Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
|
[11] |
Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
|
[12] |
Salle M A and Matveev V B 1991 Darboux transformations and solitons (Berlin: Springer-Verlag)
|
[13] |
Akhmediev N and Ankiewicz A 1993 Opt. Commun. 100 186
|
[14] |
Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
|
[15] |
Zhao L C, Xin G G and Yang Z Y 2017 J. Opt. Soc. Am. B 34 2569
|
[16] |
Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918
|
[17] |
McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002
|
[18] |
Polo J and Ahufinger V 2013 Phys. Rev. A 88 053628
|
[19] |
Negretti A and Henkel C 2004 J. Phys. B: At. Mol. Opt. Phys. 37 385
|
[20] |
Helm J L, Cornish S L and Gardiner S A 2015 Phys. Rev. Lett. 114 134101
|
[21] |
Zhao L C, Xin G G, Yang Z Y and Yang W L "Atomic bright soliton interferometry", arXiv: 1804.01951
|
[22] |
Zhao L C, Ling L, Yang Z Y and Liu J 2016 Nonlinear Dyn. 83 659
|
[23] |
Zhao L C, Ling L, Yang Z Y and Yang W L 2017 Nonlinear Dyn. 88 2957
|
[24] |
Karamatskos E T, Stockhofe J, Kevrekidis P G and Schmelcher P 2015 Phys. Rev. A 91 043637
|
[25] |
Busch Th, Cirac J I, Pérez-García V M and Zoller P 1997 Phys. Rev. A 56 2978
|
[26] |
Liu X, Pu H, Xiong B, Liu W M and Gong J 2009 Phys. Rev. A 79 013423
|
[27] |
Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G and Zhang X F 2018 Phys. Rev. A 97 063607
|
[28] |
Xu T and Chen Y 2018 Commun. Nonlinear Sci. Numer. Simulat. 57 276
|
[29] |
Wang M and Chen Y 2019 Nonlinear Dyn. 98 1781
|
[30] |
Qin Y H, Zhao L C and Ling L M 2019 Phys. Rev. E 100 022212
|
[31] |
Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J and Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
|
[32] |
Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
|
[33] |
Ling L and Zhao L C 2019 Commun. Nonlinear Sci. Numer. Simulat. 72 449
|
[34] |
Zhao L C, Yang Z Y and Yang W L 2019 Chin. Phys. B 28 010501
|
[35] |
Akhmediev N and Ankiewicz A 1999 Phys. Rev. Lett. 82 2661
|
[36] |
Vijayajayanthi M, Kanna T and Lakshmanan M 2008 Phys. Rev. A 77 013820
|
[37] |
Ling L, Zhao L C and Guo B 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 285
|
[38] |
Guo B, Ling L and Liu Q P 2012 Phys. Rev. E 85 026607
|
[39] |
Snyder A W and Mitchell D J 1997 Science 276 1538
|
[40] |
Kumar V R, Radha R and Panigrahi P K 2009 Phys. Lett. A 37 4381
|
[41] |
Belyaeva T L and Serkin V N 2012 Eur. Phys. J. D 66 153
|
[42] |
Ling L, Zhao L C and Guo B L 2015 Nonlinearity 28 3243
|
[43] |
Billam T P, Cornish S L, and Gardiner S A 2011 Phys. Rev. A 83 041602
|
[44] |
Barak A, Peleg O, Stucchio C, Soffer A and Segev M 2008 Phys. Rev. Lett. 100 153901
|
[45] |
Serkin V N, Chapelaa V M, Percinoa J and Belyaevab T L 2001 Opt. Commun. 192 237
|
[46] |
Serkin V N, Hasegawa A and Belyaeva T L 2013 J. Mod. Opt. 60 116
|
[47] |
Serkin V N, Hasegawa A and Belyaeva T L 2013 J. Mod. Opt. 60 444
|
[48] |
Martin A D and Ruostekoski J 2012 New. J. Phys. 14 043040
|
[49] |
Tkeshelashvili L 2012 Phys. Rev. A 86 033836
|
[50] |
Josephson B D 1962 Phys. Lett. 1 251
|
[51] |
Bao W, Tang Q and Xu Z 2013 J. Comput. Phys. 235 423
|
[52] |
Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
|
[53] |
Busch Th and Anglin J R 2001 Phys. Rev. Lett. 87 010401
|
[54] |
Dean G, Klotz T, Prinari B and Vitale F 2013 Applic. Anal. 92 379
|
[55] |
Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
|
[56] |
Müntinga H, Ahlers H, Krutzik M, et al. 2013 Phys. Rev. Lett. 110 093602
|
[57] |
Helm J L, Billam T P, Rakonjac A, Cornish S L and Gardiner S A 2018 Phys. Rev. Lett. 12 063201
|
[58] |
Tang P, Peng P, Li Z, Chen X, Li X and Zhou X 2019 Phys. Rev. A 100 013618
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|