|
|
Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects |
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎) |
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose-Einstein condensate (BEC) trapped in a deep annular lattice with local defects both analytically and numerically. By using the two-mode ansatz and the tight-binding approximation, a critical condition for the system preserving the superfluidity is obtained analytically and confirmed numerically. We find that the coupled effects of periodic modulated atomic interactions, the quasi-momentum of the plane wave, and the defect can control the superfluidity of the system. Particularly, when we consider the periodic modulation in the system with single defect, the critical condition for the system entering the superfluid regime depends on both the defect and the momentum of the plane wave. This is different from the case for the system without the periodic modulation, where the critical condition is only determined by the defect. The modulation and quasi-momentum of the plane wave can enhance the system entering the superfluid regime. Interestingly, when the modulated amplitude/frequency, the defect strength, and the quasi-momentum of the plane wave satisfy a certain condition, the system will always be in the superfluid region. This engineering provides a possible means for studying the periodic modulation effect on propagation properties and the corresponding dynamics of BECs in disordered optical lattices.
|
Received: 28 August 2018
Revised: 29 October 2018
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11475027, 11865014, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005). |
Corresponding Authors:
Ju-Kui Xue
E-mail: xuejk@nwnu.edu.cn
|
Cite this article:
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎) Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects 2019 Chin. Phys. B 28 010307
|
[1] |
Diver M, Robb G R M and Oppo G L 2015 Phys. Rev. A 91 033622
|
[2] |
Shadkhoo S and Bruinsma R 2015 Phys. Rev. Lett. 115 135305
|
[3] |
Kengne E, Lakhssassi A, Liu W M and Vaillancourt R 2013 Phys. Rev. E 87 022914
|
[4] |
Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
|
[5] |
Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
|
[6] |
Jiang J, Zhao L, Wang S T, Chen Z, Tang T, Duan L M and Liu Y 2016 Phys. Rev. A 93 063607
|
[7] |
Li L, Li Z, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
|
[8] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
|
[9] |
Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
|
[10] |
Yamazaki R, Taie S, Sugawa S and Takahashi Y 2010 Phys. Rev. Lett. 105 050405
|
[11] |
Pollack S E, Dries D, Hulet R G, Magalhães K M F, Henn E A L, Ramos E R F, Caracanhas M A and Bagnato V S 2010 Phys. Rev. A 81 053627
|
[12] |
Theis M, Thalhammer G, Winkler K, Hellwig M, Ruff G, Grimm R and Denschlag J H 2004 Phys. Rev. Lett. 93 123001
|
[13] |
Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
|
[14] |
Abdullaev F K, Tsoy E N, Malomed B A and Kraenkel R A 2003 Phys. Rev. A 68 053606
|
[15] |
Parny L F, Rousseau V G and Roscilde T 2015 Phys. Rev. Lett. 114 195302
|
[16] |
Sabari S, Jisha C P, Porsezian K and Brazhnyi V A 2015 Phys. Rev. E 92 032905
|
[17] |
Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633
|
[18] |
Ding C Y, Zhang X F, Zhao D, Luo H G and Liu W M 2011 Phys. Rev. A 84 053631
|
[19] |
Gong J B, Morales-Molina L and Hänggi P 2009 Phys. Rev. Lett. 103 133002
|
[20] |
Rapp Á, Deng X L and Santos L 2012 Phys. Rev. Lett. 109 203005
|
[21] |
Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
|
[22] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[23] |
Hu Y, Liang Z X and Hu B B 2010 Phys. Rev. A 81 053621
|
[24] |
Yang S J and Nie S 2010 Phys. Rev. A 82 061607
|
[25] |
Wang B, Fu P, Liu J and Wu B 2006 Phys. Rev. A 74 063610
|
[26] |
Jian Y, Zhang A X, He C X, Qi X Y and Xue J K 2013 Phys. Rev. E 87 053201
|
[27] |
Larson J, Martikainen J P, Collin A and Sjöqvist E 2010 Phys. Rev. A 82 043620
|
[28] |
Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
|
[29] |
Liu S P, Li J H, Yu R and Wu Y 2013 Phys. Rev. A 87 062316
|
[30] |
Trombettoni A, Smerzi A and Bishop A R 2003 Phys. Rev. E 67 016607
|
[31] |
Trombettoni A, Smerzi A and Bishop A R 2002 Phys. Rev. Lett. 88 173902
|
[32] |
Deissler B, Zaccanti M, Roati G, D'Errico C, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nat. Phys. 6 354
|
[33] |
Bai X D and Xue J K 2012 Phys. Rev. E 86 066605
|
[34] |
Brazhnyi V A and Malomed B A 2011 Phys. Rev. E 83 016604
|
[35] |
Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
|
[36] |
Zhang Y, Mossman M E, Busch T, Engels P and Zhang C 2016 Front. Phys. 11 118103
|
[37] |
Yulin A V, Bludov Y V, Konotop V V, Kuzmiak V and Salerno M 2011 Phys. Rev. A 84 063638
|
[38] |
Skokos C and Flach S 2010 Phys. Rev. E 82 016208
|
[39] |
Stark C, Pollet L, Imamoğlu A and Renner R 2011 Phys. Rev. Lett. 107 030504
|
[40] |
Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351-352 30
|
[41] |
Li Q, Wang D S, Wen X Y and Zhuang J H 2018 Nonlinear Dyn. 91 625
|
[42] |
Wang G F, Fu L B and Liu J 2006 Phys. Rev. A 73 013619
|
[43] |
Kayanuma Y and Mizumoto Y 2000 Phys. Rev. A 62 061401(R)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|