Special Issue:
SPECIAL TOPIC — Ultracold atom and its application in precision measurement
|
SPECIAL TOPIC—Ultracold atom and its application in precision measurement |
Prev
Next
|
|
|
Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature |
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉)† |
Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne, Victoria 3122, Australia |
|
|
Abstract We theoretically investigate the finite-temperature structure and collective excitations of a self-bound ultradilute Bose droplet in a flat space realized in a binary Bose mixture with attractive inter-species interactions on the verge of mean-field collapse. As the droplet formation relies critically on the repulsive force provided by Lee-Huang-Yang quantum fluctuations, which can be easily compensated by thermal fluctuations, we find a significant temperature effect in the density distribution and collective excitation spectrum of the Bose droplet. A finite-temperature phase diagram as a function of the number of particles is determined. We show that the critical number of particles at the droplet-to-gas transition increases dramatically with increasing temperature. Towards the bulk threshold temperature for thermally destabilizing an infinitely large droplet, we find that the excitation-forbidden, self-evaporation region in the excitation spectrum, predicted earlier by Petrov using a zero-temperature theory, shrinks and eventually disappears. All the collective excitations, including both surface modes and compressional bulk modes, become softened at the droplet-to-gas transition. The predicted temperature effects of a self-bound Bose droplet in this work could be difficult to measure experimentally due to the lack of efficient thermometry at low temperatures. However, these effects may already present in the current cold-atom experiments.
|
Received: 28 October 2020
Revised: 09 December 2020
Accepted manuscript online: 11 December 2020
|
PACS:
|
03.75.-b
|
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
Fund: Project supported by the Australian Research Council's (ARC) Discovery Program (Grant Nos. DE180100592 and DP190100815), (Grant No. DP180102018), and (Grant No. DP170104008). |
Corresponding Authors:
†Corresponding author. E-mail: hhu@swin.edu.au
|
Cite this article:
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉) Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature 2021 Chin. Phys. B 30 010306
|
1 Bötcher F, Schmidt J N, Hertkorn J, Ng K S H, Graham S D, Guo M, Langen T and Pfau T2020 arXiv:2007.06391 2 Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M and Pfau T 2016 Phys. Rev. Lett. 116 215301 3 Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I and Pfau T 2016 Nature 539 259 4 Chomaz L, Baier S, Petter D, Mark M J, Wächtler F, Santos L and Ferlaino F2016 Phys. Rev. X 6 041039 5 Böttcher F, Wenzel M, Schmidt J-N, Guo M, Langen T, Ferrier-Barbut I, Pfau T, Bombìn R, Sànchez-Baena J, Boronat J and Mazzanti F 2019 Phys. Rev. Research 1 033088 6 Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas B, Cheiney P and Tarruell L 2018 Science 359 301 7 Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L and Tarruell L 2018 Phys. Rev. Lett. 120 135301 8 Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M and Fattori M 2018 Phys. Rev. Lett. 120 235301 9 Ferioli G, Semeghini G, Masi L, Giusti G, Modugno G, Inguscio M, Gallemi A, Recati A and Fattori M 2019 Phys. Rev. Lett. 122 090401 10 D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F and Fort C 2019 Phys. Rev. Research 1 033155 11 Wang D2019 Quantum Droplet in Heteronuclear Double Bose-Einstein Condensates, talk at IAS Workshop on Quantum Simulation of Novel Phenomena with Ultracold Atoms (May 6-7, 2019) 12 Dalfovo F, Lastri A, Pricaupenko L, Stringari S and Treiner J 1995 Phys. Rev. B 52 1193 13 Barranco M, Guardiola R, Hernàndez S, Mayol R, Navarro J and Pi M 2006 J. Low Temp. Phys. 142 1 14 Gessner O and Vilesov A F 2019 Annu. Rev. Phys. Chem. 70 173 15 Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463 16 Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 17 Petrov D S 2015 Phys. Rev. Lett. 115 155302 18 Petrov D S and Astrakharchik G E 2016 Phys. Rev. Lett. 117 100401 19 Baillie D, Wilson R M, Bisset R N and Blakie P B 2016 Phys. Rev. A 94 021602 20 Wächtler F and Santos L 2016 Phys. Rev. A 94 043618 21 Li Y, Luo Z, Liu Y, Chen Z, Huang C, Fu S, Tan H and Malomed B A 2017 New J. Phys. 19 113043 22 Cappellaro A, Macr\`í T and Salasnich L 2018 Phys. Rev. A 97 053623 23 Astrakharchik G E and Malomed B A 2018 Phys. Rev. A 98 013631 24 Cui X 2018 Phys. Rev. A 98 023630 25 Staudinger C, Mazzanti F and Zillich R E 2018 Phys. Rev. A 98 023633 26 Ancilotto F, Barranco M, Guilleumas M and Pi M 2018 Phys. Rev. A 98 053623 27 Parisi L, Astrakharchik G E and Giorgini S 2019 Phys. Rev. Lett. 122 105302 28 Aybar E and Oktel M ö 2019 Phys. Rev. A 99 013620 29 Cikojevi\'c V, Marki\'c L V, Astrakharchik G E and Boronat J 2019 Phys. Rev. A 99 023618 30 Chiquillo E 2019 Phys. Rev. A 99 051601(R) 31 Minardi F, Ancilotto F, Burchianti A, D'Errico C, Fort C and Modugno M 2019 Phys. Rev. A 100 063636 32 Tylutki M, Astrakharchik G E, Malomed B A and Petrov D S 2020 Phys. Rev. A 101 051601(R) 33 Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302 34 Hu H, Wang J and Liu X J 2020 Phys. Rev. A 102 043301 35 Hu H and Liu X J 2020 Phys. Rev. A 102 043302 36 Wang Y, Guo L, Yi S and Shi T 2020 Phys. Rev. Research 2 043074 37 Wang J B, Pan J S, Cui X and Yi W 2020 Chin. Phys. Lett. 37 076701 38 Lee T D, Huang K and Yang C N 1957 Phys. Rev. 106 1135 39 Wang J, Hu H and Liu X J 2020 New J. Phys. 22 103044 40 Ota M and Astrakharchik G E 2020 SciPost Phys. 9 020 41 Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130 42 Hu H and Liu X J 2020 Phys. Rev. A 102 053303 43 Hutchinson D A W, Zaremba E and Griffin A 1997 Phys. Rev. Lett. 78 1842 44 de Boor C R1978 A Practical Guide to Splines(New York: Springer) 45 van der Hart H W 1997 J. Phys. B: At. Mol. Opt. Phys. 30 453 46 Wang J and Greene C H 2010 Phys. Rev. A 82 022506 47 Schmidt M minFunc: unconstrained differentiable multivariate optimization in Matlab |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|