Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 013701    DOI: 10.1088/1674-1056/ac7861
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Space continuous atom laser in one dimension

Yi Qin(秦毅)1,2, Xiao-Yang Shen(沈晓阳)1,2, Wei-Xuan Chang(常炜玄)1,2, and Lin Xia(夏林)1,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Cold atom physics in space station arouses a lot of interest of scientists. We investigate the dynamical output process of the space continuous atom laser by solving nonlinear Gross-Pitaevksii equations numerically. Slow-moving continuous atom beams in two directions are observed simultaneously. The slow-moving coherent atom beams can be used as a source of atom interferometer to realize long-time measurements. We also control the output of space atom laser by adjusting the output coupling strength.
Keywords:  Bose-Einstein condensation      microgravity      atom laser  
Received:  14 February 2022      Revised:  29 May 2022      Accepted manuscript online:  14 June 2022
PACS:  37.10.Gh (Atom traps and guides)  
  03.75.Be (Atom and neutron optics)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400903 and 2021YFA0718302) and the National Natural Science Foundation of China (Grant No. 11874418).
Corresponding Authors:  Lin Xia     E-mail:  linxia@iphy.ac.cn

Cite this article: 

Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林) Space continuous atom laser in one dimension 2023 Chin. Phys. B 32 013701

[1] Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Kellogg J R, Kohel J M, Lay N E, Oudrhiri K, Shotwell R F, Yu N and Thompson R J 2020 Nature 582 193
[2] Liu L, Lü D S, Chen W B, et al. 2018 Nat. Commun. 9 2760
[3] Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C and Kasevich M A 2015 Phys. Rev. Lett. 114 143004
[4] Leanhardt A E, Pasquini T A, Saba M, Schirotzek A, Shin Y, Kielpinski D, Pritchard D E and Ketterle W 2003 Science 301 1513
[5] van Zoest T, Gaaloul N, Singh Y, et al. 2010 Science 328 1540
[6] Nyman R A, Varoquaux G, Lienhart F, Chambon D, Boussen S, Clément J F, Müller T, Santarelli G, Pereira Dos Santos F, Clairon A, Bresson A, Landragin A and Bouyer P 2006 Appl. Phys. B 84 673
[7] Kubelka-Lange A, Herrmann S, Grosse J, Lammerzahl C, Rasel E M and Braxmaier C 2016 Rev. Sci. Instrum. 87 063101
[8] Li C, Zhou T W, Zhai Y Y, Xiang J G, Luan T, Huang Q, Yang S F, Xiong W and Chen X Z 2017 Rev. Sci. Instrum. 88 053104
[9] Tononi A, Cinti F and Salasnich L 2020 Phys. Rev. Lett. 125 010402
[10] Tononi A and Salasnich L 2019 Phys. Rev. Lett. 123 160403
[11] Padavić K, Sun K, Lannert C and Vishveshwara S 2020 Phys. Rev. A 102 043305
[12] Lundblad N, Carollo R A, Lannert C, Gold M J, Jiang X, Paseltiner D, Sergay N and Aveline D C 2019 npj Microgravity 5 30
[13] Meister M, Roura A, Rasel E M and Schleich W P 2019 New J. Phys. 21 013039
[14] Mewes M O, Andrews M R, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1997 Phys. Rev. Lett. 78 582
[15] Anderson B P and Kasevich M A 1998 Science 282 1686
[16] Steck H, Naraschewski M and Wallis H 1998 Phys. Rev. Lett. 80 1
[17] Hagley E W, Deng L, Kozuma M, Wen J, Helmerson K, Rolston S L and Phillips W D 1999 Science 283 1706
[18] Bloch I, Hänsch T W and Esslinger T 1999 Phys. Rev. Lett. 82 3008
[19] Bloch I, Hänsch T W and Esslinger T 2000 Nature 403 166
[20] Köhl M, Hänsch T W and Esslinger T 2001 Phys. Rev. Lett. 87 160404
[21] Köhl M, Busch T, Molmer K, Hänsch T W and Esslinger T 2005 Phys. Rev. A 72 063618
[22] Riou J F, Guerin W, Le Coq Y, Fauquembergue M, Josse V, Bouyer P and Aspect A 2006 Phys. Rev. Lett. 96 070404
[23] Xia L, Yang F, Zhou X J and Chen X Z 2009 Phys. Lett. A 373 1429
[24] Becker D, Lachmann M D, Seidel S T, et al. 2018 Nature 562 391
[25] Müntinga H, Ahlers H, Krutzik M, et al. 2013 Phys. Rev. Lett. 110 093602
[26] Bolpasi V, Efremidis N K, Morrissey M J, Condylis P C, Sahagun D, Baker M and von Klitzing W 2014 New J. Phys. 16 033036
[27] Le Coq Y, Thywissen J H, Rangwala S A, Gerbier F, Richard S, Delannoy G, Bouyer P and Aspect A 2001 Phys. Rev. Lett. 87 170403
[28] Öttl A, Ritter S, Köhl M and Esslinger T 2005 Phys. Rev. Lett. 95 090404
[29] Öttl A, Ritter S, Köhl M and Esslinger T 2006 Rev. Sci. Instrum. 77 063118
[30] Robins N P, Figl C, Haine S A, Morrison A K, Jeppesen M, Hope J J and Close J D 2006 Phys. Rev. Lett. 96 140403
[31] Debs J E, Doring D, Robins N P, Figl C, Altin P A and Close J D 2009 Opt. Express 17 2319
[32] Ballagh R J, Burnett K and Scott T F 1997 Phys. Rev. Lett. 78 1607
[33] Naraschewski M, Schenzle A and Wallis H 1997 Phys. Rev. A 56 603
[34] Kneer B, Wong T, Vogel K, Schleich W P and Walls D F 1998 Phys. Rev. A 58 4841
[35] Kramer T, Bracher C and Kleber M 2002 J. Phys. A: Math. Gen. 35 8361
[36] Bracher C, Kramer T and Kleber M 2003 Phys. Rev. A 67 043601
[37] Kramer T and Rodríguez M 2006 Phys. Rev. A 74 013611
[38] Johnsson M, Haine S, Hope J, Robins N, Figl C, Jeppesen M, Dugué J and Close J 2007 Phys. Rev. A 75 043618
[39] Schneider J and Schenzle A 1999 Appl. Phys. B 69 353
[40] Robins N P, Savage C M, Hope J J, Lye J E, Fletcher C S, Haine S A and Close J D 2004 Phys. Rev. A 69 051602
[41] Dugué J, Robins N P, Figl C, Jeppesen M, Summers P, Johnsson M T, Hope J J and Close J D 2007 Phys. Rev. A 75 053602
[42] Kasevich M and Chu S 1992 Appl. Phys. B 54 321
[43] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[44] Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A and Bouyer P 2011 Nat. Commun. 2 474
[45] Snadden M, McGuirk J, Bouyer P, Haritos K and Kasevich M 1998 Phys. Rev. Lett. 81 971
[46] McGuirk J M, Foster G T, Fixler J B, Snadden M J and Kasevich M A 2002 Phys. Rev. A 65 033608
[47] Lenef A, Hammond T D, Smith E T, Chapman M S, Rubenstein R A and Pritchard D E 1997 Phys. Rev. Lett. 78 760
[48] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[49] Guan X W, Batchelor M T and Lee C 2013 Rev. Mod. Phys. 85 1633
[50] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
[51] Petrov D S, Shlyapnikov G V and Walraven J T 2000 Phys. Rev. Lett. 85 3745
[52] Paredes B, Widera A, Murg V, Mandel O, Folling S, Cirac I, Shlyapnikov G V, Hansch T W and Bloch I 2004 Nature 429 277
[53] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[54] Wilson J M, Malvania N, Le Y, Zhang Y, Rigol M and Weiss D S 2020 Science 367 1461
[55] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[56] Alam S S, Skaras T, Yang L and Pu H 2021 Phys. Rev. Lett. 127 023002
[57] Qin Y, Shen X Y and Xia L 2021 Chin. Phys. B 30 110306
[58] Antoine X and Duboscq R 2014 Comput. Phys. Commun. 185 2969
[59] Antoine X and Duboscq R 2015 Comput. Phys. Commun. 193 95
[60] Lundblad N, Jarvis T, Paseltiner D and Lannert C 2016 abstract id. K1.119
[61] Neuhasuer D and Baer M 1989 J. Chem. Phys. 90 4351
[62] Bongs K, Burger S, Dettmer S, Hellweg D, Arlt J, Ertmer W and Sengstock K 2001 Phys. Rev. A 63 031602(R)
[63] Robins N P, Altin P A, Debs J E and Close J D 2013 Phys. Rep. 529 265
[64] Robins N P, Morrison A K, Hope J J and Close J D 2005 Phys. Rev. A 72 031606
[65] Proukakis N P 2006 Phys. Rev. A 73 023605
[66] Lee G M, Haine S A, Bradley A S and Davis M J 2015 Phys. Rev. A 92 013605
[67] Proukakis N P 2002 Laser Phys. 13 527
[68] Dennis G R, Davis M J and Hope J J 2012 Phys. Rev. A 86 013640
[69] Robins N P, Figl C, Jeppesen M, Dennis G R and Close J D 2008 Nat. Phys. 4 731
[1] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[2] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[3] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[4] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[5] Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity
Wen-Guang Wang(王文广), Mei-Ying Hou(厚美瑛), Ke Chen(陈科), Pei-Dong Yu(虞培东), Matthias Sperl. Chin. Phys. B, 2018, 27(8): 084501.
[6] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[7] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[8] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[9] Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction
Lü Hao (吕昊), Zhu Shao-Bing (朱少兵), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(9): 090308.
[10] An effective method of accelerating Bose gases using magnetic coils
Lu Hai-Chang (卢海昌), Zhai Yue-Yang (翟跃阳), Pan Rui-Zhi (潘睿智), Yang Shi-Feng (杨仕锋). Chin. Phys. B, 2014, 23(9): 093701.
[11] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[12] Temperature dependence of the energy-level shift induced by the Bose–Einstein condensation of photons
Zhang Jian-Jun (张建军), Cheng Ze (成泽), Yuan Jian-Hui (袁建辉), Zhang Jun-Pei (张俊佩). Chin. Phys. B, 2012, 21(9): 090502.
[13] Influence of the virtual photon field on the squeezing properties of atom laser
Zhao Jian-Gang(赵建刚), Sun Chang-Yong(孙长勇), Wen Ling-Hua(文灵华), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2009, 18(6): 2294-2299.
[14] Effects of interface kinetics and anisotropy on the stability of the growing crystal face and dissolution face during crystallization from solution under microgravity
Zhu Zhen-He (朱振和), Hong Yong (洪勇), Ge Pei-Wen (葛培文), Yu Yu-De (俞育德). Chin. Phys. B, 2004, 13(12): 1982-1991.
[15] Second harmonic generation of propagating collective excitations in Bose-Einstein condensates
Huang Guo-Xiang (黄国翔). Chin. Phys. B, 2004, 13(11): 1866-1876.
No Suggested Reading articles found!