Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010309    DOI: 10.1088/1674-1056/ac3396
Special Issue: SPECIAL TOPIC — Non-Hermitian physics
SPECIAL TOPIC—Non-Hermitian physics Prev   Next  

Two-body exceptional points in open dissipative systems

Peize Ding(丁霈泽)1 and Wei Yi(易为)1,2,†
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
Abstract  We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation. Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation, we show that the non-Hermitian effective Hamiltonian of the master equation gives rise to two-body scattering states with state- and interaction-dependent parity-time transition. The resulting two-body exceptional points can be extracted from the trace-preserving density-matrix dynamics of the same dissipative system with three atoms. Our results not only demonstrate the interplay of parity-time symmetry and interaction on the exact few-body level, but also serve as a minimal illustration on how key features of non-Hermitian few-body physics can be probed in an open dissipative many-body system.
Keywords:  non-Hermitian physics      parity-time symmetry      open system      Lindblad equation  
Received:  24 August 2021      Revised:  22 October 2021      Accepted manuscript online:  27 October 2021
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.75.Ss (Degenerate Fermi gases)  
Fund: We thank Xiaoling Cui for helpful discussions. Project supported by the National Natural Science Foundation of China (Grant No. 11974331) and the National Key R&D Program of China (Grant Nos. 2016YFA0301700 and 2017YFA0304100).
Corresponding Authors:  Wei Yi     E-mail:  wyiz@ustc.edu.cn

Cite this article: 

Peize Ding(丁霈泽) and Wei Yi(易为) Two-body exceptional points in open dissipative systems 2022 Chin. Phys. B 31 010309

[1] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Chirstodoulides D N 2018 Nat. Phys. 14 11
[2] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[3] Miri M A and Alú A 2019 Science 363 eaar7709
[4] Ashida Y, Gong Z and Ueda M 2020 Adv. Phys. 69 249
[5] Dalibard J, Castin Y and Mølmer K 1992 Phys. Rev. Lett. 68 580
[6] Daley A 2014 Adv. Phys. 63 77
[7] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[8] Bender C M 2007 Rep. Prog. Phys. 70 947
[9] Kawabata K, Ashida Y and Ueda M 2017 Phys. Rev. Lett. 119 190401
[10] Dóra B, Heyl M and Moessner R 2019 Nat. Commun. 10 2254
[11] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[12] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[13] Martinez Alvarez V M, Vargas Barrios J E and Foe Torres L E F 2018 Phys. Rev. B 97 121401(R)
[14] McDonald A, Pereg-Barnea T and Clerk A A 2018 Phys. Rev. X 8 041031
[15] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103(R)
[16] Lee T E 2016 Phys. Rev. Lett. 16 133903
[17] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[18] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[19] Xiao L, Zhan X, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
[20] Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401
[21] Xiao L, Deng T S, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[22] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun 10 855
[23] Lapp S, Ang’ong’a J, An F A and Gadway B 2019 New J. Phys. 21 045006
[24] Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W and Yan B 2020 Phys. Rev. Lett. 124 070402
[25] Chen T, Gou W, Xie D, Xiao T, Yi W, Jing J and Yan B 2021 npj Quantum Information 7 78
[26] Ren Z, Liu D, Zhao E, He C, Pak K K, Li J and Jo G B 2021 arXiv: 2106.04874[cond-mat.quant-gas]
[27] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X and Du J 2019 Science 364 878
[28] Liu W, Wu Y, Duan C K, Rong X and Du J 2021 Phys. Rev. Lett. 126 170506
[29] Naghiloo M, Abbasi M, Jogelkar Y N and Murch K W 2019 Nat. Phys. 19 1232
[30] Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H and Chen P X 2021 Phys. Rev. A 103 L020201
[31] Ding L, Shi K, Zhang Q, Shen D, Zhang X and Zhang W 2021 Phys. Rev. Lett. 126 083604
[32] Zhou L and Cui X 2019 iScience 14 257
[33] Yamamoto K, Nakagawa M, Adachi K, Takasan K, Ueda M and Kawakami N 2019 Phys. Rev. Lett. 123 123601
[34] Zhou L, Yi W and Cui X 2020 Phys. Rev. A 102 043310
[35] Zhou Z and Yu Z 2019 Phys. Rev. A 99 043412
[36] Pan L, Chen S and Cui X 2019 Phys. Rev. A 99 063616
[37] Kozii V and Fu L 2017 arXiv: 1708.05841[cond-mat.mes-hall]
[38] Michishita Y and Peters R 2020 Phys. Rev. Lett. 124 196401
[39] Brody D C 2014 2014 J. Phys. A: Math. Theor. 47 035305
[40] Iskin M and Sa de Melo C A R 2005 Phys. Rev. B 72 224513
[1] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[2] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[3] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[4] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[5] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[6] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[7] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[8] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[9] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[10] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[11] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[12] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[13] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[14] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[15] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
No Suggested Reading articles found!