Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060501    DOI: 10.1088/1674-1056/24/6/060501
GENERAL Prev   Next  

Analysis of field coupling to transmission lines with random rotation over the ground

Xie Hai-Yan (谢海燕)a, Li Yong (李勇)a, Qiao Hai-Liang (乔海亮)a, Wang Jian-Guo (王建国)a b
a Northwest Institute of Nuclear Technology, Xi'an 710024, China;
b School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper we analyze plane wave coupling to transmission lines rotating randomly over an infinite and perfectly conducting ground and present an efficient method to calculate average voltage. Under the assumption of small rotation quantity, the factors affecting the induced voltage and their effects are analyzed and then an efficient method to calculate the average voltage is presented when the distribution of the random rotation angles is uniform in [-π, π]. The results show that voltage variation is mainly due to the change of the source term. The effects of the source term increase linearly with the magnitude of the incident wave, change periodically with the rotation angle, and are larger in the high frequency range than in the low frequency range. The results show that the average voltages obtained by the proposed method agree well with those via the Monte Carlo method and the proposed method is much more efficient. The results also imply that the effect of random rotation is more important than that of random translation.
Keywords:  electromagnetic interference      induced voltage      randomness      statistical analysis      transmission line  
Received:  02 December 2014      Revised:  22 January 2015      Accepted manuscript online: 
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  41.20.-q (Applied classical electromagnetism)  
  84.40.Az (Waveguides, transmission lines, striplines)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61231003 and 61201090).
Corresponding Authors:  Xie Hai-Yan     E-mail:  xiehaiyan@nint.ac.cn
About author:  05.10.-a; 41.20.-q; 84.40.Az

Cite this article: 

Xie Hai-Yan (谢海燕), Li Yong (李勇), Qiao Hai-Liang (乔海亮), Wang Jian-Guo (王建国) Analysis of field coupling to transmission lines with random rotation over the ground 2015 Chin. Phys. B 24 060501

[1] Tesche F M, Ianoz M V and Karlsson T 1997 EMC Analysis Methods and Computational Models (New York: Wiley)
[2] Paul C R 2008 Analysis of Multiconductor Transmission Lines, 2nd edn. (New Jersey: John Wiley & Sons, Inc.)
[3] Agrawal A K, Price H J and Gurbaxani S H 1980 IEEE Trans. Electromagn. Compat. EMC-22 119
[4] Tesche F M 2007 IEEE Trans. Electromagn. Compat. 49 3
[5] Tesche F M 2007 IEEE Trans. Electromagn. Compat. 49 427
[6] Haase H, Nitsch J and Steinmetz T 2003 Rev. Radio Sci. No. 307 pp. 33-60
[7] Xie H, Wang J, Fan R and Liu Y 2009 IEEE Trans. Electromagn. Compat. 51 811
[8] Parkinson E R and Levy P H 1982 IEEE Trans. Nucl. Sci. Vol. NS-29 pp. 1920-1923
[9] Bellan D and Pignari S 2001 IEEE Trans. Electromagn. Compat. 43 130
[10] Wu Z, Wang L and Liao C 2009 Acta Phys. Sin. 58 6146 (in Chinese)
[11] Pignari S and Bellan D 2000 Proc. IEEE Int. Symp. Electromagn. Compat., Vol. 2, pp. 605-609, Washington, USA
[12] Caniggia S and Maradei F 2004 IEEE Trans. Electromagn. Compat. 46 606
[13] Feliziani M and Maradei F 2001 Proc. IEEE Int. Symp. Electromagn. Compat., vol. 1, pp. 167-172, Montreal, Que, Canada
[14] Ni G, Li Y and Yuan N 2008 Chin. Phys. B 17 3629
[15] Nuno L, Holloway C L and Wilson P F 2008 Proc. Int. Symp. Electromagn. Compat., September 8-12, 2008, Hamburg, Germany, p. 1
[16] Xie H, Wang J and Li S 2011 Prog. Electromagn. Res. B 35 167
[17] Xie H, Wang J and Li Y 2014 IEEE Trans. Electromagn. Compat. 56 1623
[18] Xie H, Wang J and Fan R 2010 IEEE Trans. Electromagn. Compat. 52 215
[1] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[2] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[3] Constructing refined null models for statistical analysis of signed networks
Ai-Wen Li(李艾纹), Jing Xiao(肖婧, and Xiao-Ke Xu(许小可). Chin. Phys. B, 2021, 30(3): 038901.
[4] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[5] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[6] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[7] Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model
Chengcheng Liu(刘成成), Rui Dong(东蕊), Boyi Li(李博艺), Ying Li(李颖), Feng Xu(徐峰), Dean Ta(他得安), Weiqi Wang(王威琪). Chin. Phys. B, 2019, 28(2): 024302.
[8] Wider frequency domain for negative refraction index in a quantized composite right-left handed transmission line
Qi-Xuan Wu(吴奇宣), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2018, 27(6): 068102.
[9] Physics-based analysis and simulation model of electromagnetic interference induced soft logic upset in CMOS inverter
Yu-Qian Liu(刘彧千), Chang-Chun Chai(柴常春), Yu-Hang Zhang(张宇航), Chun-Lei Shi(史春蕾), Yang Liu(刘阳), Qing-Yang Fan(樊庆扬), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(6): 068505.
[10] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[11] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
[12] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
[13] Soliton excitation in the pass band of the transmission line based on modulation
Guoying Zhao(赵帼英), Feng Tao(陶锋), Weizhong Chen(陈伟中). Chin. Phys. B, 2016, 25(4): 044101.
[14] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德). Chin. Phys. B, 2015, 24(3): 035203.
[15] Nonlinear properties of the lattice network-based nonlinear CRLH transmission lines
Wang Zheng-Bin (王正斌), Wu Zhao-Zhi (吴昭质), Gao Chao (高超). Chin. Phys. B, 2015, 24(2): 028503.
No Suggested Reading articles found!