Yi Qin(秦毅)1,2, Xiaoyang Shen(沈晓阳)1,2, and Lin Xia(夏林)1,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Using coupled Gross-Pitaevksii (GP) equations, we simulate the output of one-dimensional pulsed atom laser in space station. We get two atom laser pulses propagating in opposite directions with one pulsed RF coupling. Compared with atom laser under gravity, the laser pulse in microgravity shows much slower moving speed, which is suitable to be used for long-term investigations. We also simulate the output flux at different coupling strengths.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600 and 2016YFA0301500) and the National Natural Science Foundation of China (Grant No. 11874418).
Corresponding Authors:
Lin Xia
E-mail: linxia@iphy.ac.cn
Cite this article:
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林) One-dimensional atom laser in microgravity 2021 Chin. Phys. B 30 110306
[1] Aveline D C, Williams J and Elliott E 2020 Nature582 193 [2] Liu L, Lü D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K and Wang Y Z 2018 Nat. Commun.9 2760 [3] Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp A, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, Zoest T V, Ertmer W, Schleich W P and Rasel E M 2013 Phys. Rev. Lett.110 093602 [4] Becker D, Lachmann M D, Windpassinger P and Rasel E M 2018 Nature562 391 [5] Li C, Zhou T, Zhai Y, Xiang J, Luan T, Huang Q, Xiong W and Chen X Z 2017 Rev. Sci. Instrum.88 053104 [6] Luan T, Li Y, Zhang X and Chen X Z 2018 Rev. Sci. Instrum.89 123110 [7] Matthias M, Albert R, Rasel E M and Schleich W P 2019 New J. Phys21 013039 [8] Tononi A, Cinti F and Salasnich L 2020 Phys. Rev. Lett.125 010402 [9] Tononi A and Salasnich L 2019 Phys. Rev. Lett.123 160403 [10] Lundblad N, Carollo R A, Lannert C, Gold M J, Jiang X, Paseltiner D, Sergay N and Aveline C 2019 npj Microgravity5 30 [11] Padavić K, Sun K, Lannert C and Vishveshwara S 2020 Phys. Rev. A102 043305 [12] Mewes M O, Andrews M R, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1997 Phys. Rev. Lett.78 582 [13] Robins N P, Savage C M, Hope J J, Lye J E, Fletcher C S, Haine S A and Close J D 2004 Phys. Rev. A69 051602 [14] Xia L, Yang F, Zhou X and Chen X Z 2009 Phys. Lett. A373 1429 [15] DugúeJ, Robins N P, Figl C, Jeppesen M, Summers P, Johnsson M T, Hope J J and Close J D 2007 Phys. Rev. A75 053602 [16] Coq Y L, Thywissen J F, Rangwala S A, Gerbier F, Richard S, Delannoy G, Bouyer P and Aspect A 2001 Phys. Rev. Lett.87 170403 [17] Öttl A, Ritter S, Köhl M and Esslinger T 2005 Phys. Rev. Lett.95 090404 [18] Köhl M, Hänsch T W and Esslinger T 2001 Phys. Rev. Lett.87 160404 [19] Bloch I, Hansch T W and Esslinger T 2000 Nature403 166 [20] Xia L, Xiong W, Wang F, Yi L, Zhou X J and Chen X Z 2008 Chin. Phys. Lett.25 2374 [21] Liu X J, Jing H and Ge M L 2006 Chin. Phys. Lett.23 1184 [22] Qin J L 2019 Chin. Phys. B28 126701 [23] Rolston S and Phillips W N 2002 Nature416 219 [24] Büning G K, Will J, Ertmer W, Klempt C and Arlt J 2010 Appl. Phys. B100 117 [25] Zoest T V, Gaaloul N, Singh T, Ahlers H, Herr W, Seidel S T, Ertmer W, Rasel E, Eckart M, Kajari E, Arnold S, Nandi G, Schleich W P, Walser R, Vogel A, Sengstock K, Bongs K, Lewoczko-Adamczyk W, Schiemangk M, Schuldt T, Peters A, Könemann T, Müntinga H, Lämmerzahl C, Dittus H, Steinmetz T, Hänsch T W and Reiche 2010 Science328 1540 [26] Kinoshita T, Wenger T R and Weiss D S 2004 Science305 1125 [27] Paredes B, Widera A and Murg V 2004 Nature429 277 [28] Wilson J M, Malvania N, Le Y, Zhang Y, Rigol M and Wesis D S 2020 Science367 1461 [29] Kinoshita T, Wenger T and Weiss D S 2006 Nature440 900 [30] Schneider J and Schenzle A 1999 Appl. Phys. B69 353 [31] Antoine X and Duboscq R 2014 Comput. Phys. Commun.185 2969 [32] Robins N, Altin P, Debs J and Close J 2013 Phys. Rep.529 265 [33] Jeffers J, Horak P, Barnett S M and Radmore P M 2000 Phys. Rev. A62 043602 [34] Hope J J, Moy G M, Collett M J and Savage C M 2000 Phys. Rev. A61 023603 [35] Robins N P, Morrison A K, Hope J J and Close J D 2005 Phys. Rev. A72 031606(R) [36] Steck H, Naraschewski M and Wallis H 1998 Phys. Rev. Lett.80 1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.