Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050302    DOI: 10.1088/1674-1056/27/5/050302
GENERAL Prev   Next  

Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice

Wen-yan Zhou(周雯琰)1, Ya-jie Wu(吴亚杰)2, Su-Peng Kou(寇谡鹏)1
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 School of Science, Xi'an Technological University, Xi'an 710032, China
Abstract  

We study the topological properties of Bogoliubov excitation modes in a Bose-Hubbard model of three-dimensional (3D) hyperhoneycomb lattices. For the non-interacting case, there exist nodal loop excitations in the Bloch bands. As the on-site repulsive interaction increases, the system is first driven into the superfluid phase and then into the Mott-insulator phase. In both phases, the excitation bands exhibit robust nodal-loop structures and bosonic surface states. From a topology point of view, these nodal-loop excitation modes may be viewed as a permanent fingerprint left in the Bloch bands.

Keywords:  hyperhoneycomb lattice      Mott-superfluid transition      Bogoliubov excitations      nodal-loop  
Received:  16 November 2017      Revised:  23 February 2018      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.25.dj (Superfluid transition and critical phenomena)  
  37.10.Jk (Atoms in optical lattices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11474025,11674026,and 11504285),Specialized Research Fund for the Doctoral Program,China,and Young Talent Fund of University Association for Science and Technology in Shaanxi,China (Grant No.20160224).

Corresponding Authors:  Su-Peng Kou     E-mail:  spkou@bnu.edu.cn

Cite this article: 

Wen-yan Zhou(周雯琰), Ya-jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏) Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice 2018 Chin. Phys. B 27 050302

[13] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
[1] Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D and Takagi H 2015 Phys. Rev. Lett. 114 077202
[14] Süsstrunk R and Huber S D 2015 Science 349 6243
[2] Biffin A, Johnson R D, Choi S, Freund F, Manni S, Bombardi A, Manuel P, Gegenwart P and Coldea R 2014 Phys. Rev. B 90 205116
[15] Shindou R, Matsumoto R, Murakami S and Ohe J 2013 Phys. Rev. B 87 174427
[3] Modic K A, Smidt T E, Kimchi I, Breznay N P, Biffin A, Choi S, Johnson R D, Coldea R, Watkins-Curry P, McCandless G T, Gandara F, Islam Z, Vishwanath A, Chan J Y, Shekhter A, McDonald R D and Analytis J G 2014 Nat. Commun. 5 4203
[16] Shindou R, Ohe J, Matsumoto R, Murakami S and Saitoh E 2013 Phys. Rev. B 87 174402
[4] Lee E K, Bhattacharjee S, Hwang K, Kim H, Jin H and Kim Y 2014 Phys. Rev. B 89 205132
[17] Li Y, Zhong W X, Wang D Q, Feng Q R, Liu Z X, Zhou J F, Jia C Y, Hu F, Zeng J W, Guo Q C, Fu L and Luo M M 2016 Nat. Commun. 7 10503
[5] Mullen K, Uchoa B and Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403
[18] Bardyn C E, Karzig T, Refael G and Liew T C 2015 Phys. Rev. B 91 161413
[6] Hermanns M, O'Brien K and Trebst S 2015 Phys. Rev. Lett. 114 157202
[19] Karzig T, Bardyn C E, Lindner N H and Refael G 2015 Phys. Rev. X 5 031001
[7] Schaffer R, Lee E K, Lu Y M and Kim Y B 2015 Phys. Rev. Lett. 114 116803
[20] Zhang L F, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
[8] Ezawa M 2016 Phys. Rev. Lett. 116 127202
[21] Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Alidoust N, Lee C C, Huang S M and Lin H 2016 Nat. Commun. 7 10735
[9] Furukawa S and Ueda M 2015 New J. Phys. 17 115014
[22] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
[10] Wu Y J, Zhou W Y and Kou S P 2017 Phys. Rev. A 95 023620
[23] Mook A, Henk J and Mertig I 2017 Phys. Rev. B 95 014418
[11] Peano V, Houde M, Brendel C, Marquardt F and Clerk A A 2016 Nat. Commun. 7 10779
[24] Li K K, Li C Y, Hu J P and Fang C 2017 Phys. Rev. Lett. 119 247202
[12] Peano V, Houde M, Marquardt F and Clerk A A 2016 Phys. Rev. X 6 041026
[25] Li K K, Li C Y, Hu J P, Li Y and Fang C 2017 Chin. Phys. Lett. 34 077501)
[13] Prodan E and Prodan C 2009 Phys. Rev. Lett. 103 248101
[26] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[14] Süsstrunk R and Huber S D 2015 Science 349 6243
[27] Lim L K, Smith C M and Hemmerich A 2008 PPhys. Rev. Lett. 100 130402
[15] Shindou R, Matsumoto R, Murakami S and Ohe J 2013 Phys. Rev. B 87 174427
[28] Chen B L, Kou S P, Zhang Y and Chen S 2010 Phys. Rev. A 81 053608
[16] Shindou R, Ohe J, Matsumoto R, Murakami S and Saitoh E 2013 Phys. Rev. B 87 174402
[29] Keleş, Ahmet and Oktel and Oktel M Ö 2015 Phys. Rev. A 91 013629
[17] Li Y, Zhong W X, Wang D Q, Feng Q R, Liu Z X, Zhou J F, Jia C Y, Hu F, Zeng J W, Guo Q C, Fu L and Luo M M 2016 Nat. Commun. 7 10503
[30] Landau L D and Lifshitz E M 1980 Course of Theoretical Physics 5
[18] Bardyn C E, Karzig T, Refael G and Liew T C 2015 Phys. Rev. B 91 161413
[31] Heikkilä T T and Volovik G E 2011 Jetp Lett. 93 59
[19] Karzig T, Bardyn C E, Lindner N H and Refael G 2015 Phys. Rev. X 5 031001
[32] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[20] Zhang L F, Ren J, Wang J S and Li B W 2013 Phys. Rev. B 87 144101
[33] Yu R, Weng H M, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[21] Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Alidoust N, Lee C C, Huang S M and Lin H 2016 Nat. Commun. 7 10735
[34] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[22] Kim S K, Ochoa H, Zarzuela R and Tserkovnyak Y 2016 Phys. Rev. Lett. 117 227201
[35] Huang B B and Yang X S 2018 J. Phys. B:At. Mol. Opt. Phys. 51 015302
[23] Mook A, Henk J and Mertig I 2017 Phys. Rev. B 95 014418
[36] Mullen K, Uchoa B, Wang B and Glatzhofer D 2017 arXiv:1603.01647
[24] Li K K, Li C Y, Hu J P and Fang C 2017 Phys. Rev. Lett. 119 247202
[25] Li K K, Li C Y, Hu J P, Li Y and Fang C 2017 Chin. Phys. Lett. 34 077501)
[26] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[27] Lim L K, Smith C M and Hemmerich A 2008 PPhys. Rev. Lett. 100 130402
[28] Chen B L, Kou S P, Zhang Y and Chen S 2010 Phys. Rev. A 81 053608
[29] Keleş, Ahmet and Oktel and Oktel M Ö 2015 Phys. Rev. A 91 013629
[30] Landau L D and Lifshitz E M 1980 Course of Theoretical Physics 5
[31] Heikkilä T T and Volovik G E 2011 Jetp Lett. 93 59
[32] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[33] Yu R, Weng H M, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[34] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[35] Huang B B and Yang X S 2018 J. Phys. B:At. Mol. Opt. Phys. 51 015302
[36] Mullen K, Uchoa B, Wang B and Glatzhofer D 2017 arXiv:1603.01647
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[4] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[5] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[6] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[7] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[10] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[11] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[12] Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2019, 28(1): 010307.
[13] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[14] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[15] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
No Suggested Reading articles found!