Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060305    DOI: 10.1088/1674-1056/24/6/060305
GENERAL Prev   Next  

Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling

Xie Wen-Fang (解文方)a, He Yan-Zhang (贺彦章)b, Bao Cheng-Guang (鲍诚光)b
a School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China;
b School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The evolution of two-component cold atoms on a ring with spin–orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.
Keywords:  light-induced spin-orbit coupling      spin-currents of cold atoms      condensates on a ring  
Received:  06 November 2014      Revised:  16 January 2015      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874249).
Corresponding Authors:  Bao Cheng-Guang     E-mail:  stsbcg@mail.sysu.edu.cn
About author:  03.75.Kk; 03.75.Mn; 03.75.Nt

Cite this article: 

Xie Wen-Fang (解文方), He Yan-Zhang (贺彦章), Bao Cheng-Guang (鲍诚光) Oscillation of the spin-currents of cold atoms on a ring due to light-induced spin-orbit coupling 2015 Chin. Phys. B 24 060305

[1] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[2] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[4] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature 396 345
[5] Dalibard J, Gerbier F, Juzeliunas G and Ohberg P 2011 Rev. Mod. Phys. 83 1523
[6] Zhai H 2012 Int. J. Mod. Phys. B 26 1230001
[7] Galitski V and Spielman I B 2013 Nature 494 49
[8] Goldman N, Juzeliunas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[9] Zhai H 2014 arXiv: 1403.8021v1 [cond-mat.quant-gas]
[10] Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[11] Ruseckas J, Juzeliunas G, Ohberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[12] Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401
[13] Liu X J, Borunda M F, Liu X and Sinova J 2009 Phys. Rev. Lett. 102 046402
[14] Juzeliunas G, Ruseckas J and Dalibard J 2010 Phys. Rev. A 81 053403
[15] Anderson B M, Juzeliunas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
[16] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[17] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[18] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[19] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[20] Beattie S, Moulder S, Fletcher R J and Hadzibabic Z 2013 Phys. Rev. Lett. 110 025301
[21] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[22] Li Y, Martone G I and Stringari S 2012 Europhys. Lett. 99 56008
[23] Ozawa T, Pitaevskii L P and Stringari S 2013 Phys. Rev. A 87 063610
[24] Chen Z and Zhai H 2012 Phys. Rev. A 86 041604
[25] Gupta S, Murch K W, Moore K L, Purdy T P and Stamper-Kurn D M 2005 Phys. Rev. Lett. 95 143201
[26] Arnold A S, Garvie C S and Riis E 2006 Phys. Rev. A 73 041606
[27] Ryu C, Andersen M F, Cladé P, Natarajan V, Helmerson K and Phillips W D 2007 Phys. Rev. Lett. 99 260401
[28] Henderson K, Ryu C, MacCormick C and Boshier M G 2009 New J. Phys. 11 043030
[29] Ramanathan A, Wright K C, Muniz S R, Zelan M, Hill W T, Lobb C J, Helmerson K, Phillips W D and Campbell G K 2011 Phys. Rev. Lett. 106 130401
[30] Sherlock B E, Gildemeister M, Owen E, Nugent E and Foot C J 2011 Phys. Rev. A 83 043408
[31] Moulder S, Beattie S, Smith R P, Tammuz N and Hadzibabic Z 2012 Phys. Rev. A 86 013629
[32] Wright K C, Blakastal R B, Lobb C J, Phillips W P and Campbell G K 2012 arXiv: 1208.3608
[33] Xue Rui, Li W D and Liang Z X 2014 Chin. Phys. Lett. 31 030302
[34] Zheng W and Li Z B 2012 Phys. Rev. A 85 053607
[35] Li Y, Martone G I, Pitaevskii L P and Stringari S 2013 Phys. Rev. Lett. 110 235302
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[4] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[5] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[6] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[7] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[8] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[9] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[10] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[11] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[12] Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2019, 28(1): 010307.
[13] Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice
Wen-yan Zhou(周雯琰), Ya-jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2018, 27(5): 050302.
[14] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[15] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
No Suggested Reading articles found!