Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 116701    DOI: 10.1088/1674-1056/ab457e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates

Lang Zheng(郑浪)1,2, Yi-Cai Zhang(张义财)3, Chao-Fei Liu(刘超飞)2
1 Jiangxi Provincial Education Examination Authority, Nanchang 330038, China;
2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
3 School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
Abstract  Reflection and transmission are two behaviors of wave propagating to an interface. The immiscible binary mixtures of Bose-Einstein condensates can form the symmetry-breaking state, in which the domain wall on the center can serve as the interface. In this study, we explore in detail the propagation of a dark soliton interacting with the domain wall in the harmonic trap. We find that the low-energy dark soliton is easy to form the transmission and the high-energy dark soliton trends to reflect from the domain wall. Both reflection and transmission of dark soliton on the domain wall induce the sound radiation. But the sound radiation in the reflection derives from the collective oscillation of condensates, and it in the transmission comes not only from the collective oscillation, but also from the condensate filling in the dark soliton.
Keywords:  Bose-Einstein condensate      dark soliton  
Received:  27 May 2019      Revised:  12 September 2019      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61565007, 11875149, 11747079, and 11874127), the Science Fund from the Department of Science and Technology of Jiangxi Province, China (Grant Nos. 20162BCB23049 and 20171ACB21045), the Youth Jinggang Scholars Program in Jiangxi Province, China, and the Program of Qingjiang Excellent Yong Talents, Jiangxi University of Science and Technology, China.
Corresponding Authors:  Chao-Fei Liu     E-mail:  liuchaofei0809@163.com

Cite this article: 

Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞) Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates 2019 Chin. Phys. B 28 116701

[38] Liu C F, Lu M and Liu W Q 2012 Phys. Lett. A 376 188
[1] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[39] Liu C F, Hu K, Hu T and Tang Y 2010 Phys. Lett. A 374 2089
[2] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[3] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926
[4] Engels P and Atherton C 2007 Phys. Rev. Lett. 99 160405
[5] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[6] Carr L D, Br J, Burger S and Sanpera A 2001 Phys. Rev. A 63 051601(R)
[7] Brazhnyi V A and Kamchatnov A M 2003 Phys. Rev. A 68 043614
[8] Burger S, Carr L D, Öhberg P, Sengstock K and Sanpera A 2002 Phys. Rev. A 65 043611
[9] Reinhardt W P and Clark C W 1997 J. Phys. B:At. Mol. Opt. Phys. 30 L785
[10] Busch T and Anglin J R 2000 Phys. Rev. Lett. 84 2298
[11] Pelinovsky D E, Frantzeskakis D J and Kevrekidis P G 2005 Phys. Rev. E 72 016615
[12] Brazhnyi V A, Konotop V V and Pitaevskii L P 2006 Phys. Rev. A 73 053601
[13] Öhberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
[14] Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
[15] Esry B D, Greene C H, Burke J P Jr and Bohn J L 1997 Phys. Rev. Lett. 78 3594
[16] Timmermans E 1998 Phys. Rev. Lett. 81 5718
[17] Öhberg P and Stenholm S 1998 Phys. Rev. A 57 1272
[18] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
[19] Graham R and Walls D 1998 Phys. Rev. A 57 484
[20] Chui S T and Ao P 1999 Phys. Rev. A 59 1473
[21] Ao P and Chui S T 1998 Phys. Rev. A 58 4836
[22] Öhberg P 1999 Phys. Rev. A 59 634
[23] Kasamatsu K, Yasui Y and Tsubota M 2001 Phys. Rev. A 64 053605
[24] Liu C F and Tang Y 2009 Eur. Phys. J. B 70 193
[25] Liu C F, Hu K, Hu T and Tang Y 2011 Chin. Phys. B 20 010309
[26] Liu C F, Pan X Q and Zhang G Y 2016 Journal of Jiangxi University of Science and Technology 37 102(in Chinese)
[27] Konotop V V and Pitaevskii L 2004 Phys. Rev. Lett. 93 240403
[28] Liu C F and Liu W M 2012 Phys. Rev. A 86 033602
[29] Samuelis C, Tiesinga E, Laue T, Elbs M, Knöckel H and Tiemann E 2000 Phys. Rev. A 63 012710
[30] Parker N G, Proukakis N P, Leadbeater M and Adams C S 2003 Phys. Rev. Lett. 90 220401
[31] Parker N G, Proukakis N P, Barenghi C F and Adams C S 2004 J. Phys. B:At. Mol. Opt. Phys. 37 S175
[32] Proukakis N P, Parker N G, Barenghi C F and Adams C S 2004 Phys. Rev. Lett. 93 130408
[33] Jackson B, Proukakis N P and Barenghi C F 2007 Phys. Rev. A 75 051601(R)
[34] Liu C F, Fan H, Zhang Y C, Wang D S and Liu W M 2012 Phys. Rev. A 86 053616
[35] Feder D L, Pindzola M S, Collins L A, Schneider B I and Clark C W 2000 Phys. Rev. A 62 053606
[36] Huang G, Makarov V A and Velarde M G 2003 Phys. Rev. A 67 023604
[37] Br J and Reinhardt W P 2002 Phys. Rev. A 65 043612
[38] Liu C F, Lu M and Liu W Q 2012 Phys. Lett. A 376 188
[39] Liu C F, Hu K, Hu T and Tang Y 2010 Phys. Lett. A 374 2089
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[10] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[11] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[12] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[13] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[14] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[15] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
No Suggested Reading articles found!