Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110301    DOI: 10.1088/1674-1056/abf4f9
GENERAL Prev   Next  

Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity

Hui-Fang Wang(王慧芳)1, Jin-Jun Zhang(张进军)2,†, and Jian-Jun Zhang(张建军)2,‡
1 School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China;
2 School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China
Abstract  We study the Bose-Einstein condensation of parallel light in a two-dimensional nonlinear optical cavity, where the massive photons are converted into photon molecules (p-molecules). We extend the classical-field method to provide a description of the two-component system, and we also derive a coupled density equation which can be used to describe the conversion relation between photons and p-molecules. Furthermore, we obtain the chemical potential of the system, and we also find that the system can transform from the mixed photon and p-molecule condensate phase into a pure p-molecule condensate phase. Additionally, we investigate the collective excitation of the system. We also discuss the problem how the spontaneous decay of an atom is influenced by both the phase transition and collective excitation of the coupling system.
Keywords:  parallel light      Bose-Einstein condensation      quantum phase transition      collective excitation  
Received:  19 January 2021      Revised:  08 March 2021      Accepted manuscript online:  06 April 2021
PACS:  03.50.-z (Classical field theories)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Graduate Science and Technology Innovation Project of Shanxi Normal University (Grant No. 01053011) and the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program (Grant No. 1G2017IHEPKFYJO1).
Corresponding Authors:  Jin-Jun Zhang, Jian-Jun Zhang     E-mail:;

Cite this article: 

Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军) Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity 2021 Chin. Phys. B 30 110301

[1] Bose 1924 Z. Phys. 26 178
[2] Fang J S and Xiang P 2011 Chin. Phys. B 20 040310
[3] Einstein J P and Macdonald A H 2004 Nature 432 691
[4] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007
[5] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[6] Sun Y B, Wen P, Yoon Y, Liu G Q, Steger M, Pfeiffer L N, West K, Snoke D W and Nelso K A 2017 Phys. Rev. Lett. 118 016602
[7] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[8] Weill R, Bekker A, Levit B and Fischer B 2019 Nat. Commun. 10 747
[9] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545
[10] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403
[11] van der Wurff E C I, de leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett. 113 135301
[12] Weiss C and Tempere J 2016 Phys. Rev. E 94 042124
[13] Cheng Z 2016 Phys. Rev. A 93 023829
[14] Mendonca J T and Tecas H 2017 Phys. Rev. A 95 063611
[15] Kruchkov A J 2016 Phys. Rev. A 93 043817
[16] Rajan R, Babu P R and Senthilnathan K 2016 Front. Phys. 11 110502
[17] Strinati M C and Conti C 2014 Phys. Rev. A 90 043853
[18] Dung D, Kurtscheid C, Damn T, Schmitt J, Vewinger F, Weitz M and Klaers J 2017 Nat. Photon. 11 565
[19] Marelic J and Nyman R A 2015 Phys. Rev. A 91 033813
[20] Schmitt J, Damm T, Dung D, Vewinger F, klaers J and Weitz M 2015 Phys. Rev. A 92 011602
[21] de Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A 88 033829
[22] Chiocchetta A and Carusotto I 2014 Phys. Rev. A 90 023633
[23] Sob'yania D N 2013 Phys. Rev. E 88 022132
[24] kirton P and Keeling J 2015 Phys. Rev. A 91 033826
[25] Fontaine Q, Bienaime T, Pigeon S, Giacobino E, Bramati A and Glorieux Q 2018 Phys. Rev. Lett. 121 183604
[26] Leboeuf P and Moulieras S 2010 Phys. Rev. Lett. 105 163904
[27] Sela E, Rosch A and Fleurov V 2014 Phys. Rev. A 89 043844
[28] Prakapenia M A and Vereshchagin G V 2019 Europhys. Lett. 128 50002
[29] Vyas V M, Panigrahi P K and Srinivasan V 2016 arXiv:1602.08280 [physics.optics]
[30] Klaers J, Schmitt J, Damm T, Dung D, Vewinger F and Weitz M 2013 Proc. SPIE Int. Soc. Opt. Eng. 8600 86000L
[31] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114
[32] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2011 Appl. Phys. B 105 17
[33] Santos G, Tonel A, Foerster A and Links J 2016 Phys. Rev. A 73 023609
[34] Cheng D, Li Y, Feng E and Huang W Y 2017 Chin. Phys. B 26 013402
[35] Liu Y X and Zhao B 2020 Chin. Phys. B 29 023103
[36] Tanzi L, Cabrera C R, Sanz J, Cheiney P, Tomza M and Tarruell L 2018 Phys. Rev. A 98 062712
[37] Castin Y and Dum R 1998 Phys. Rev. A 57 3008
[38] Li S C, Liu J and Fu L B 2011 Phys. Rev. A 83 042107
[39] Li S C and Fu L B 2011 Phys. Rev. A 84 023605
[40] Bogoliubov N 1947 J. Phys. (USSR) 11 23
[41] Duine R A and Stoof H T C 2003 Phys. Rev. Lett. 91 150405
[42] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University) p. 206
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[7] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[8] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[10] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[11] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[12] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[13] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!