Abstract The optoelectronic properties of n-TiO2NW/p-Si heterojunction fabricated by depositing TiO2 nanowires on a p-Si substrate are studied. Under excitation at a wavelength of 370 nm, the TiO2 nanowires produce a light emission at 435 nm due to the emission of free excitons. The I-V characteristics are measured to investigate the heterojunction effects under the dark environment and ultraviolet (UV) illumination. n-TiO2NW/p-Si has a p-n junction formed in the n-TiO2/p-Si heterojunction. TiO2NW/Si photodiode produces a photocurrent larger than dark current under UV illumination. It is observed that UV photons are absorbed in TiO2 and the heterojunction shows a 0.034-A/W responsivity at 4-V reverse bias.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.